The Solid State Energy Conversion Alliance

2nd Annual SECA Workshop March 29th & 30th, 2001

Joseph P. Strakey

National Energy Technology Laboratory

Public Benefits

- Negligible emissions of SO₂, NOx, particulates, VOC using fossil fuels
- Double the efficiency of producing power from fossil fuels
 - Reduced CO₂ emissions
 - Reduced dependence on imported fuels
- Reliability of power supply
- Multiple fuel capability

The Vision: Fuel Cells in 2010

Low Cost/High Volume \$400/kW/ > 50,000 units/yr

A High Power Density, Low Cost Core SECA **Module for Multiple Applications**

Key to Cost Reduction: Mass Customization of Common Modules

Military

SECA Development: Progressive Applications

2005

- \$800/kW
- Prototype (\$-Unit)3 10 kW

2010

- \$400/kW
- Commercial

2015

- Vision 21 Power Plants
 70-80% efficient plants
- Propulsion <\$200?/kW

Program Structure

Program Management

Project Management

Research Topics

Needs

Core Technology Program

Industry Integration Teams The Manufacturing Base

Multiple Integration Teams

Industry Integration Teams

- Three to six competitively selected DOE/DOD teams
- Prototype within four years of award.
- 20% cost share in Phase I
 50% in Phase II and III.

Industrial Team Solicitation Components SEG

Technical Approach

Statement of Work, Milestones, and Test Plan

Cost Estimate

Capabilities, Facilities, Team Structure and Personnel

Market Evaluation and Applicants
Existing Experience

Industrial Team Minimum Requirements

PHASE III

Power Rating Net 3-10 kW

Cost \$400 / kW

Efficiency 30 - 50% [APU]

(AC or DC/LHV) 40 - 60% [Stationary]

Testing (Steady State): >1500 hours

- 95% availability

- Power ≤0.1% degradation/500 hours at a constant stack voltage

(Transient): >100 cycles defined by application

- Power ≤ 1% degradation after 100 cycles at a constant stack voltage

Industrial Team Minimum Requirements SECA

PHASE III

Design Lifetime 5,000 Hours [APU]

40,000 Hours [Stationary]

Maintenance Interval > 1,000 Hours

Fuels Natural Gas (Current infrastructure) Gasoline

Diesel

Core Technology Program The Technology Base

Core Technology Program (CTP)

Raising the Technology Baseline.

- CTP developments can benefit all SECA Industrial Teams
- A mix of short (1-2 year) projects that address the needs of multiple Industrial Teams and a few longer term projects that add significant value to all projects.
- Biannual meeting of CTP participants, Industrial Teams, Project Management Team
- Limited Lab Call in FY01
- Solicitation in FY01 for universities and small businesses

Intellectual Property Cornerstone of the Alliance

- Non-Exclusive License
- CTP Industry Teams
- Ready market of potential licensees
- Best designs vs. highest bidder
- Promotes Collaboration Limits Redundancy

Exceptional Circumstance Provisions

- Each Industrial Team will be offered a nonexclusive license for the IP generated by the Core Technology Program in the SOFC field of use
- Offers must be open for 1 year after issue of a U.S. patent
- Pilot program; reevaluate after 2 years

SECA Players/Efforts

Universities, National Labs, Industry

- Multi-layered, co-fired, planar, SOFC stack
- Manufacturing technology utilizes
 high-volume production methods currently
 employed in the manufacture of multi-layer
 ceramic packages

Honeywell

- Manufacturing process based on tape calendering for multi-layer planar SOFC using a new Honeywell design concept
- Demonstrate cell performance

Pacific Northwest National Laboratory

- SOFC component development
- SOFC modeling & experimental support
- Prototype small stack testing of developed components and concepts
- Supporting Delphi through CRDA

- Development of low-temperature cathode materials
- Sulfur tolerant anode materials
- Metallic bi-polar plates and stack
- Systems modeling

 Theoretical studies and materials work on cathode microstructures while maintaining high-power density performance with standard solid oxide fuel cell materials at reduced temperatures

NORTHWESTERN UNIVERSITY

 Revisit the segmented-in-series SOFC design using modern multi-layer manufacturing techniques

OAK RIDGE NATIONAL LABORATORY

- Anode supported thin film fuel cell development
- Tape casting, screen printing

- Fuel cell reformer R&D
- Fuel cell modeling and simulation
- Testing of all fuel cell types
- Dynamic hybrid system studies
- Sensors

 Identify, characterize, test new electrolyte materials that have ionic conductivity suitable for use in the 550 - 800°C range, and are chemically stable at SOFC operating conditions

- Develop a stable bi-layer electrolyte for low-T SOFC's
- Develop a detailed kinetic/ thermodynamic/transport model for use in evaluating bi-layer electrolytes and for SOFC cell evaluation

 Evaluate and test the suitability of electrolyte materials for low temperature SOFC operation in combination with cathode materials

NEXTECH

MATERIALS

 Research co-sintered electrode supported planar fuel cells, spin coated ultra-thin electrolytes, and co-extrusion of monolithic shapes

 Implement a screen-print manufacturing technique for production of complete cells at lower cost

DELPHI

Automotive Systems

- New project selected in FY 2000 (In negotiation)
- PNNL providing technology support through CRDA

SECA Timeline

 1st Annual SECA Workshop 	June 1-2, 2000
--	----------------

Industry Team Solicitation Issued November 3, 2000

• Proposals Due January 24, 2001

January 4, 2002

January 3, 2003

• SECA Core Technology February 14 & 15, Program Workshop 2000

2nd Annual SECA Workshop March 29-30,2001

2001 Industrial Teams Selected May 2001

Core Technology Program May 2001
 Solicitation Issued

Core Technology Program Review November 2001
 Meeting

SECA FY01 Funding (millions)

- FY 2001 Funding \$18.9
- Industrial Funding \$ 11.8
 - -FY 2001 Industrial Team Funding \$7.4
 - Multi-Layer Ceramic \$3.7
 - -Systems \$0.5
 - -Materials \$0.24
- Core Technology Program \$ 6.7
 - -National Laboratories \$5.4
 - -Universities \$0.57
 - -FY 2001 \$ 0.68
- Studies, Workshops, and Support \$0.43

DOD Interests/Activities

- Core Technology
 - Accelerate development
 - Logistic fuels
- Militarization
 - Survivability, shock & vibration, etc.
- Integration
 - Balance of plant packaging
- Testing
 - Laboratory to field environment

Some SECA-Related Solicitations

- ✓ California Energy Commission PIER Solicitation
- ✓ DOE Office of Transportation Technology CARAT Solicitation
- ✓ NIST Advanced Technology Program
- ✓ EC FRAMEWORK V and VI
- ✓ DOD DARPA Palm Power

EU - US Cooperation

- Transatlantic network supporting research and stimulating co-operation on fuel cells for transportation and stationary applications, including several SECA-related areas:
 - Auxiliary power units
 - Codes and standards,
 - SOFC and high temperature fuel cell hybrid systems
 - Assessment of availability of critical materials for high temperature fuel cells

Responding to the Needs of the Nation

President Bush and I are deeply committed to developing an energy policy that includes . . . developing new technologies that conserve fossil fuels and reduce energy-related pollution.

Spencer Abraham, Secretary of Energy

