Solid Oxide Fuel Cell Research at Argonne National Laboratory R. Kumar, R. Ahluwalia, T. Cruse, J. Ralph, X. Wang, and M. Krumpelt 2nd Solid State Energy Conversion Alliance Workshop Arlington, VA March 29-30, 2001 #### Task areas - Low-temperature cathode materials - Sulfur-tolerant anode materials - Metallic interconnect (bipolar) plates - Cell, stack, and systems modeling ### Low-Temperature Cathode Development Overview - LSM is a poor cathode material at <900°C, even as LSM/YSZ composite - Need to develop a mixed conducting material to achieve better power densities at ≤800°C - Options: - replace Mn in LSM by Co, Fe, or Ni - move to differently structured materials - La(Sr)FeO₃ (LSF) has proven to be the most compatible and best performing cathode with YSZ #### Low-Temperature Cathode Development Perovskite-based cathodes | Composition | Electronic Conductivity | Ionic Conductivity | |--|-------------------------------|-------------------------------| | | (Scm ⁻¹) at 800°C | (Scm ⁻¹) at 900°C | | La _{1-X} Sr _X CoO ₃ | 1000-2000 | 8×10 ⁻¹ | | La _{1-X} Sr _X FeO ₃ | 400-500 | 1×10 ⁻² | | La _{1-X} Sr _X NiO ₃ | 500 | - | | $La_{1-X}Sr_{X}MnO_{3}$ | 100-200 | 10^{-7} | | La _{1-X} Sr _X CrO ₃ | <100 | <10 ⁻⁷ | #### Low-Temperature Cathode Development Area-specific resistances on YSZ - Ferrite-based perovskites display best performance at all temperatures (initial target ASR is $<1~\Omega~cm^2$) - Layered structures show good performance at ≥850°C but high activation energies preclude use at ≤800°C - Nickelate-based perovskite has potential <u>if</u> the structure can be stabilized when doped ### Low-Temperature Cathode Development Long-term ASR on YSZ at 800°C - LSF displays the most stable performance with an ASR of $<1 \Omega \text{ cm}^2$ - LN has too high an ASR at 800°C #### Low-Temperature Cathode Development Polarization curves for La(Sr)FeO₃ on YSZ - Current conditioned for ~330 h at 250 mA cm⁻² at 800°C - Overpotentials decreased with time over the 16 days - Values for LSF at 800°C are similar to LSM at 1000°C # Sulfur-Tolerant Anode Materials Approach - Modify conventional anode material with an additive that has suitable redox chemistry - additive captures H₂S in preference to Ni; the H₂S is subsequently oxidized to SO₂ - Replace the Ni in Ni-YSZ with other metal or alloy active for electrooxidation of H₂ but resistant to poisoning by H₂S - Investigate new classes of materials based on carbides and/or sulfides ### Sulfur-Tolerant Anode Materials Status - Several candidate anode materials have been coated on commercial YSZ disks for half-cell tests - Testing will get underway within the next few weeks with fuel gases containing 0-100 ppm H₂S **Test Apparatus Schematic** #### Metallic Interconnect Development Materials requirements - Electronically conductive - Chemically stable under under both anodic and cathodic conditions - Coefficient of thermal expansion similar to the other fuel cell materials - Formable (for internally manifolded stack designs) ## Metallic Interconnect Development Approach - Alloys similar to ferritic stainless steels - reduce Cr, other elements that can degrade fuel cell performance - additives to improve properties and protective scale - Coated materials to impart chemical stability - Powder production by mechanical alloying techniques - Processing technique can yield almost any desired shape - flat, corrugated, textured, functionally graded ### Metallic Interconnect Development Electrical resistance of the oxide scale ### Metallic Interconnect Development Multi-layer plates show excellent bonding 10 layers of ferritic stainless steel alloy Each layer ~140 μm thick (Fe-Cr-La-Y-Sr) Argonne Electrochemical Technology Program # Cell, Stack, and Systems Modeling Current density distribution, 0.7 V, 85% u_f - Single cell model: sample results - Current density can vary by a factor of 5 # Cell, Stack, and Systems Modeling Cell performance change with reformate | | H u m id ified H $_{2}$ | Reformate | |----------------------|-------------------------|-------------------------| | Active CellArea | 196 cm ² | 196 cm^2 | | FuelCom position | 95.2% H ₂ | 59.2% H ₂ | | | 4.8% H ₂ O | 19.3% H ₂ O | | | | 4.2% CH ₄ | | | | 10.3% CO | | | | 7.1% CO ₂ | | In let Tem perature | 6 5 0 °C | 6 5 0 ⁰ C | | MaxCellTemperature | 8 0 4 ⁰ C | 800°C | | FuelU tilization | 85.30% | 85.30% | | 0 xygen U tilization | 7 .3 0 % | 9 .4 0 % | | CallVoltage | 0.7 V | 0.7 V | | Avg NemstPotential | 0.86 V | 0.84 V | | Avg CurrentDensity | $0.65~\mathrm{A/cm}^2$ | $0.518~\mathrm{A/cm}^2$ | | G mss Power | 89.4 W | 71 W | | NetPower | 87.1 W | 70.1 W | # Cell, Stack, and Systems Modeling Stack performance vs. fuel utilization ### Summary Current and future work - Micro-engineer the cathodeelectrolyte interface to further improve cathode performance - Evaluate anode materials with 0-100 ppm H₂S in fuel gas - Characterize oxide scale on metallic bipolar plates for growth rates and electrical conductivity - Test developed materials in full cell and short stack configurations, as appropriate