

NATIONAL ENERGY TECHNOLOGY LABORATORY

Success Stories in DOE's ARRA Smart Grid Program

Steve Bossart, Senior Energy Analyst Smart Grids & Microgrids for Government & Military Symposium October 24-25, 2013, Arlington, VA

Topics

- OE ARRA Smart Grid Program
- OE ARRA Smart Grid Progress
- Case Studies/Success Stories
- Life After ARRA Smart Grid

DOE OE ARRA Smart Grid Program

(#>

Smart Grid ARRA Activities

American Recovery and Reinvestment Act (\$4.5B)

- Smart Grid Investment Grants (99 projects)
 - \$3.4 billion Federal; \$4.7 billion private sector
 - > 800 PMUs covering almost 100% of transmission
 - ~ 8000 distribution automation circuits
 - > 15 million smart meters

- Smart Grid Demonstration Projects (32 projects)
 - \$685 million Federal; \$1 billion private sector
 - 16 storage projects
 - 16 regional demonstrations

Smart Grid ARRA Activities (continued)

Additional ARRA Smart Grid Activities

- Interoperability Framework by NIST (\$12M)
- Transmission Analysis and Planning (\$80M)
- State Electricity Regulator Assistance (\$49M)
- State Planning for Smart Grid Resiliency (\$52M)
- Workforce Development (\$100M)

Technology Deployment

SGIG/SGDP Areas of Smart Grid Technology Deployment					
Customer Systems	Advance Metering Infrastructure	Electric Distribution Systems	Electric Transmission Systems	Equipment Manufacturing	
 Displays Internet portals Direct load controls Programmable thermostats EV Chargers 	 Smart meters Data management Back office integration 	 Auto switches Automated capacitors Auto voltage regulators Equipment monitoring Energy Storage 	 Wide area monitoring Synchrophasor Technology Phasor data concentrators Dynamic line rating Energy Storage 	 Energy devices Software Appliances 	

ARRA Smart Grid Progress

(#>)

SGIG Deployment Status

(#>

Customer Devices in SGIG Projects

Customer Devices Installed and Operational Deployed as of September 30, 2013

(#>

Customers with Smart Meters Enrolled in Pricing Programs in SGIG

(#>

Case Studies/Success Stories

(#>

Peak Demand Reduction from AMI, Pricing, and Customer Systems

Selected examples from SGIG projects reporting initial results

Project Floments	OG&E	MMLD	SVE	
Project Liements	770,000 customers 11,000 customers		18,000 customers	
Customers Tested	6,000 residential	500 residential	600 mostly residential	
Time-Based Rate(s)	TOU and VPP, w/CPP	СРР	СРР	
Customer Systems	IHDs, PCTs, and Web	Web Portals	Web Portals	
	Portals			
Peak Demand	Up to 30%	37%	Up to 25%	
Reduction	1.3 kW/customer	0.74 kW/customer	0.85 kW/customer	
	(1.8 kW/customer w/CPP)			
Outcome	Deferral of 210 MW of	Lowers total	Lowers total purchase	
	peak demand by 2014	purchase of peak	of peak electricity	
	with 20% participation	electricity		
Customer Acceptance	Positive experience, many	Positive experience,	Interested in continued	
	reduced electricity bills	but did not use the	participation, many	
		web portals often	reduced electricity bills	

(#>

AMI Improvements in Operational Efficiencies

Results from 15 projects due to automation of metering service tasks and reductions in labor hours and truck rolls

Smart Meter Capabilities	O&M Savings	% Reduction
Remote meter readingRemote service	Meter Operations Cost	13-77
connections/disconnections	Vehicle Miles	12-59

Future SGIG examples to provide information on other benefits

Expected Benefits		
Enables potential recovery of ~1% of revenues that may be lost from meter tampering		
Enables faster restoration (e.g., PECO avoided 6,000 truck rolls following Superstorm Sandy and accelerated restoration by 2-3 days)		
Enables more effective management of voltages for conservation voltage reductions and other VVO applications		

(#>

Reliability Improvements from Automated Feeder Switching

Selected examples from SGIG projects reporting initial results

4 Projects involving 1,250 feeders

April 1, 2011 through March 31, 2012

Index	Description	Weighted Average (Range)
SAIFI	System Average Interruption Frequency Index (outages)	- 22 % (-11% to -49%)
MAIFI	Momentary Average Interruption Frequency Index (interruptions)	- 22 % (-13% to -35%)
SAIDI	System Average Interruption Duration Index (minutes)	- 18 % (+4% to -56%)
CAIDI	Customer Average Interruption Duration Index (minutes)	+8 % (+29% to -15%)

Weighted average based on numbers of feeders

Value of Service from Improvements in Reliability

Selected example from an SGIG project reporting initial results 1 project involving 230 automated feeder switches on 75 circuits in an urban area From Apr 1 – Sep 30 2011

SAIDI improved 24%; average outage duration decreased from 72.3 to 54.6 minutes

Estimated Average Customer Interruption Costs US 2008\$ by Customer Type and Duration

Customer Type	Interruption Cost Summer		Interruption Duration			
	Weekday	<u>Momentary</u>	<u>30 mins</u>	<u>1 hr</u>	<u>4 hr</u>	<u>8 hr</u>
Large C&I	Cost Per Average kWh	\$173	\$38	\$25	\$18	\$14
Small C&I	Cost Per Average kWh	\$2,401	\$556	\$373	\$307	\$272
Residential	Cost Per Average kWh	\$21.6	\$4.4	\$2.6	\$1.3	\$0.9

Estimated monetary value of this improvement in reliability based on value-of-service data is \$21 million

Sullivan J, Michael, 2009 Estimated Value of Service Reliability for Electric Utility Customers in the US, xxi NATIONAL ENERGY TECHNOLOGY LABORATORY

(#>

Applying Volt/VAR Optimization to Improve Energy Efficency

Conservation voltage reduction (CVR) reduces customer voltages along a distribution feeder for lowering peak demands and overall energy consumption

	Energy and	Example Using SGIG Project Data			
Cu Voltage reduced	stomer Voltage "CVR-off" voltage profile	Results averaged across 11 circuits	% Reductions	Potential savings for a 7 MV peak circuit with 53% load factor	
adjusting the LTC set-points	"CVR-on" voltage profile	Customer Energy Reduction	2.9%	943 MWh/year	\$75,440 (at \$.08/kWh)
	Distribution Source Voltage	Peak Demand Reduction	3%	210 kW	Defer construction of peaking plants
	Distance along circuit				

Case Study

Investor-Owned Utility

(#>

(#)

Florida Power and Light (FPL)

Smart Grid Solutions Strengthen Electric Reliability and Customer Services in Florida

Key Activities

- 3 million smart meters being installed with pilot programs testing customer systems and time-based rate programs.
- Thousands of substation devices for automating switches, capacitors, transformers, and regulators and equipment health monitors at substations.
- 45 phasor measurement units and supporting transmission line monitors.

Aims and Strategies

- Improve reliability by monitoring key transmission and distribution equipment for preventative maintenance and avoidance of outages.
- Make operational efficiency improvements by reducing truck rolls for service calls by automating meter functions.
- Engaging customers through information exchange via web portals and pilot programs with customer systems and time-based rates

Results and Benefits

- In January, 2012, monitor detected an out-of-tolerance high voltage bushing and customers served by this transformer temporarily switched to another one. Meanwhile, the faulty bushing replaced, preventing an outage that would have affected several thousand customers.
- In September, 2011, an alarm signaled a potential problem with a degraded phase on a capacitance voltage transformer. Field engineers located the damaged transformer, removed the affected transmission line section from service, and replaced the defective device thus preventing an extended outage and that could have affected several thousand customers.

One of SGIG's largest and most comprehensive projects

Smart transformers report on health and status to FPL control centers

Facts & Figures

Total Project Budget: \$578,000,000

Federal Share: \$ 200,000,000

TEL

FPL Facts: 4.5 million customers 70,000 miles of power lines 16 power plants

Electric Cooperative

(#>

eEnergy Vermont

A State-Wide Strategy for Smart Grid Development

Key Activities

- Smart metering roll-out for outage management and time-based rates for demand response.
- Distribution system automation including switches, reclosers, SCADA, and communications backbone systems.
- Consumer behavior studies by Vermont Electric Cooperative (VEC)and Central Vermont Public Service to assess customer acceptance, response, and retention.

Aims and Strategies

• A collaborative effort involving all of the state's electric distribution companies to modernize Vermont's electric grid and foster economic growth as part of the state's "eState Initiative" with telecommunications and health care.

Results and Benefits

(#)

- VEC's outage management system has improved SAIFI by 50% and CAIDI by 40% since installed in 2008.
- VEC's smart metering roll-out and outage management system has a 5 year payback period from operational saving alone.
- VEC received POWER Magazine's first "Smart Grid Award" in August 2011 for its pioneering efforts in outage management.
- Restoration of the grid from Tropical storm Irene occurred quicker and with greater customer awareness of repair schedules due to smart meters, web portals, and more effective outage management.

Utilities working together to modernize the grid.

Vermont Electric Cooperative's Smart Grid Operations Center

Facts & Figures

Total Project Budget: \$137,857,302

Federal Share: \$69,928,650

Distribution Automation:

47 circuits and substations

Smart meters: 311,380

TEL

Time-Based Rates: 1,500 customers targeted

Case Study

Municipal Power

(#>

Electric Power Board of Chattanooga

Improved System Restoration

Key Activities

- EPB's Smart Grid Project covers 600 miles throughout 9 counties of Georgia and Tennessee affecting 170,000 customers.
- Installing automated feeder switches, automated circuits, advanced SCADA, AMI, in-home displays, and communications infrastructure.

Aims and Strategies

- Electric Distribution System Automation installing automated feeder switches and sensor equipment for distribution circuits that can be used to detect faults and automatically switch to reroute power and restore all other customers.
- Communications Infrastructure includes fiber optic systems that enable two-way communication between the meters, substations, and control office which provides EPB with expanded capabilities and functionality to optimize energy delivery, system reliability, and customer service options.

Results and Benefits

(#)

DRAF

- During the April 2011 storms, three fourths of EPB customers 129,000 residences and businesses – lost power.
 - Smart switches avoided thousands of hours of outage time due to the devices and automation already installed
 - o EPB was able to avoid sending repair crews out 250 times

Integrating Smart Grid Applications

Facts & Figures

Total Project Budget: \$226,707,562

Federal Share: \$111,567,606

Equipment Deployed:

Smart Switches: 1,500 AMI:170,000 Direct LC Devices: 5,000 HEMS: 5,000 Thermostats: 5,000 Automated Circuits:164

Y TEC

Life After ARRA Smart Grid Program

(#>)

Life After ARRA Smart Grid Program

Build and maintain momentum

- Make business case
- Identify, allocate, and quantify benefits
- Identify and quantify costs
- Address technical issues
- Address regulatory issues
- Address customers concerns

Contact Information

Steve Bossart (304) 285-4643 <u>Steven.Bossart@netl.doe.gov</u>

Federal Smart Grid Website www.smartgrid.gov

Smart Grid Clearinghouse www.sgiclearinghouse.org/

Smart Grid Implementation Strategy www.netl.doe.gov/smartgrid/index.html

(#>

