

NETL Ref. No: 23N-05

Blended Rubbery Polymer for Gas Separation

Opportunity

The U.S. Department of Energy's National Energy Technology Laboratory (NETL) has developed a method for creating advanced polymer membranes to efficiently separate carbon dioxide (CO_2) from nitrogen (N_2). These membranes combine excellent CO_2 permeability, selectivity and stability, even in humid conditions, making them ideal for industrial applications like CO_2 capture from flue gas. NETL's rubbery blend membrane resists aging and humidity and

Gas separation properties of NETL's blended rubbery polymer membrane (green dot).

exceeds Robeson's 2008 upper bound for CO_2/N_2 separation. By exhibiting high CO_2 permeance (up to 4,500 GPU), moderate CO_2/N_2 selectivity (40) and long-term stability, it can efficiently separate CO_2 from flue gas in power plants and industrial facilities, providing a more stable and cost-effective alternative to traditional amine-based capture systems. High molecular weight facilitates thin-film coating, enabling defect-free membranes as thin as 120 nm. It is a versatile platform for CO_2 separation, medical devices and other applications requiring robust, high-performance membranes. This invention is available for licensing and/or further collaborative research from NETL.

Problems Addressed

- Industrial processes that require CO₂/N₂ separation often depend on membranes that can provide high permeability and selectivity. However, these materials have poor mechanical integrity and aging resistance.
- Other solutions lack robustness and performance when exposed to humidity or prolonged use.
- Complex fabrication steps and difficulties in achieving thin, defect-free films that do not degrade in the presence of
 water vapor or fluctuating temperatures further complicate efforts, underscoring the need for more reliable, highperformance membrane materials.

Potential Commercial Application

- Industrial CO₂ separation: efficiently removing CO₂ from flue gas and other industrial gas streams.
- CO₂ conversion membrane reactors: for processes designed to convert or utilize CO₂.
- Biomedical and hydrogel-based applications: wound dressings, tissue engineering and drug delivery.

Competitive Advantages

- Features higher CO₂ permeability compared to cellulose acetate.
- Balances permeability and selectivity at levels surpassing established performance limits.
- Maintains adaptability for diverse industrial application.

Intellectual Property Status

A provisional patent application has been filed.

Licensing

Partnerships@netl.doe.gov

Inventors

David Hopkinson, Lingxiang Zhu and Victor Kusuma

