NOVEL UPCYCLED CO₂-NEGATIVE CONCRETE PRODUCTION SYSTEM CONSTRUCTED

Utilizing CO₂ and industrial byproducts to create CO₂negative upcycled concrete that performs as well, or better, than traditional construction materials

NEW, VALUE-ADDED PRODUCT FOR THE COAL INDUSTRY TO REDUCE EMISSIONS AND OPEN MARKETS

Flue gas-borne CO₂ and repurposed abundant industrial wastes, such as crystalline slags and fly ash, can be used to create "upcycled concrete." This value-added product provides the coal power industry with a viable path to significantly reduce its carbon emissions.

The "upcycled concrete" production process also minimizes external energy needs by fully utilizing low-grade heat sourced from the flue gas, which decreases operating costs.

Basic Oxygen **Furnace Slag**

Steel Slag

Upcycling Process Outcome

Cylindrical Mortar Specimens

INTEGRATED TECHNOLOGY PRODUCTION PROCESS

- Completed construction of a novel laboratory-scale upcycled concrete production system.
- The integrated "bolt-on" technology incorporates calcium leaching, portlandite precipitation, mixture formulation, and structural shape stabilization—while maximizing CO₂ uptake.

CARBONATED MORTARS HAVE HIGHER COMPRESSIVE STRENGTH THAN TRADITIONAL MORTARS

Mechanical compaction tests of carbonated and non-carbonated mortar samples composed of fly ash-portlandite binders show that compressive strength increased upon mineral carbonation (>15 MPa target achieved).

• Direct correlation between strength and CO₂ uptake and carbonate formation; higher CO₂ uptake is attributed to higher levels of portlandite $(Ca(OH)_{2})$ in the mixture.

 $Ca(OH)_{2} + CO_{2} \rightarrow CaCO_{3} + H_{2}O$ Max CO_2 uptake = 59% by mass

REDUCED EMISSIONS AND LOWER COSTS

While maintaining **equivalent or superior performance** to ordinary Portland cement (OPC)-based concrete, "Upcycled Concrete" enables the following:

- CO₂ uptake >6% by mass due to an integrated CO₂ mineralization process that facilitates low-temperature portlandite precipitation.
- Reduces the 100-year Global Warming Potential by 175–250 kg CO₂e/m³, equivalent to a 57-82% CO₂ emissions reduction.
- The fully loaded production cost for 140 m³/day of upcycled concrete is estimated at \$97/m³, which is below the OPC concrete block market price (\$100–170/m³).
- Utilization of flue gas CO_2 and the ability to repurpose abundant industrial wastes opens new markets for coal products.

PARTNERS

WWW.NETL.DOE.GOV

Carbonation Process

AWARD NUMBER DE-FE0029825

PROJECT BUDGET

FY20 FUNDING

• DOE	\$999,999
• UCLA	\$300,000
• ASU	\$50,000

CONTACTS

AMISHI KUMAR

JOSEPH STOFFA

ANDREW JONES

PRINCIPAL INVESTIGATOR **GAURAV N. SANT**

CORE COMPETENCIES

MATERIALS ENGINEERING and MANUFACTURING

