University of Pittsburgh Water Discussion Series

A Research Perspective on the Water-Energy Nexus

Solutions for Today | Options for Tomorrow

"Water, water, every where, Nor any drop to drink."

The Rime of the Ancient Mariner Samuel Taylor Coleridge, 1834

Global Water Availability

Only ~2.5% of global water is fresh, with ~99% tied up in ice caps, locked deep in earth, contaminated, or otherwise unavailable

332,500,000 mi³ -- All water above, in, and on earth

2,551,000 mi³ -- Liquid fresh water in lakes, rivers, swamps, and groundwater

22,399 mi³ -- Liquid fresh water in lakes and rivers

Mi³ = cubic miles (1.1 trillion gal); Earth: 260 billion mi³

Source: USGS, https://www.usgs.gov/special-topic/water-science-school/science/how-much-water-thereearth?qt-science center objects=0#qt-science center objects

World Renewable Fresh Water Resources

Other Countries Brazil Russia Canada USA China Columbia

Source: AQUASTAT database of U.N. Food and Agriculture Organization, May 2013.

ATIONAL

Water Security Grand Challenge

Announced by White House 10/25/2018, and Led by DOE

Coordinated suite of prizes, competitions, early-stage R&D funding opportunities, critical partnerships, and other programs by 2030 in order to:

- Launch desalination technologies that deliver costcompetitive clean water
- Transform energy sector's produced water from waste to resource
- Achieve near-zero water impact for new thermoelectric power plants, and significantly lower freshwater use intensity within the existing fleet
- Double resource recovery from municipal wastewater
- Develop small, modular energy-water systems for urban, rural, tribal, national security, and disaster response settings.

WATER SECURITY GRAND CHALLENGE

Abundance Through Innovation

https://www.energy.gov/eere/water-security-grand-challenge

Water & Energy Inextricably Linked

Water needed/impacted throughout fossil-energy lifecycle

- Mining
- Drilling/Fracking
- REE Recovery
- AMD/Produced Water

- Fuel Upgrading
- REE Recovery Coal Conversion
- Barge
- Coal-water Slurry
- Fresh /PW

- Cooling
- Steam cycle

- Wet Scrubbing
- CO₂ Capture/Storage
- Byproduct Disposal/Reuse
- PW Treatment
- ZLD/Water Treatment

Energy-Related U.S. Freshwater Withdrawal

Thermoelectric generation is second largest water withdrawal sector

• Total U.S. freshwater withdrawal is 389B m³/year

u.s. department of **ENERGY**

- Mining, which includes oil and natural gas recovery and coal extraction, accounts for ~0.7% of total U.S. freshwater withdrawals (~25% groundwater)
- Thermoelectric (primarily cooling) accounts for ~34% of total freshwater withdrawals (~100% surface water)
- **Agriculture** accounts for nearly 80% of nation's consumptive use

Sources: USGS, "Estimating Use of Water in the United States in 2015," and USDA Economic Research Service

Water Withdrawal vs. Consumption

WITHDRAWAL (USE)

Water removed from ground or diverted from surface water source for use.

CONSUMPTION

Fraction of water withdrawn that is not returned to source, e.g., water evaporated from cooling towers.

History of Water-for-Energy R&D at NETL

Started in early 2000s as part of NETL's Innovations for Existing Plants Program

- Prior to 2000 NETL had a loose collection of a few water projects primarily related to former BOM AMD research absorbed by Lab
- In 2002, NETL sponsored 1st public workshop on emerging water issues and research needs associated with thermoelectric power generation
- Research focused initially on water availability and quality affecting the existing fleet of coal-fired power plants
- Since then R&D has expanded to include water issues across NETL's carbon capture & storage, unconventional oil & gas development, rare earths recovery, and related fossil energy programs

National Alliance for Water Innovation (NAWI)

Key component of DOE's Water Security Grand Challenge

Energy-Water Desalination Hub

Establish an Energy Innovation Hub in Energy-Water Desalination to accelerate transformational advances in science and engineering focused on <u>reducing the</u> <u>energy and cost</u> requirements of desalination to provide clean and safe water

National Alliance for Water Innovation

Water Research & Innovation at NETL

Research focused on availability and quality Issues

Water research conducted from discovery through demonstration.

NETL has established robust portfolio of intramural (inhouse) and extramural water-related research projects directed at availability and quality issues.

Work is being conducted across the following areas:

- ADVANCED COOLING TECHNOLOGY
 - Wet, dry, and hybrid cooling
- NON-TRADITIONAL WATER RECOVERY & USE
 - Recovery/reuse of mine water, AMD REE recovery,, coal drying, flue gas moisture recover
- WATER TREATMENT & DETECTION TECHNOLOGY
 - Desalination, PW treatment, advanced sensors, novel sorbents, power plant wastewater; As & Se detection
- DECISION SCIENCE & MODELING
 - Modeling, analysis, and decision-making tools

Current Water-Energy Project Examples

Southwest Research Institute

Developing non-water-based and non CO₂-based stimulation technologies that can be used instead of, or in tandem with, waterbased hydraulic fracturing fluids to reduce water usage and the volume of flowback fluids.

Southern Research Institute

Developing technology to treat CO₂ sequestration produced waters with high total dissolved solids not treatable using traditional membrane processes.

University of Kentucky and Duke Energy

Developing advanced electrocoagulation with air-based flotation for removing regulated species from FGD wastewater.

In-house developed

zeolite membrane

UKy-CAER Separation Modules

Iron-based Electrocoagulation

Value Product Recovery

Addressing AMD and recovering rare earths

- Team from NETL, University of Pittsburgh, and Hedin Environmental Inc. assessing recovery of rare earth elements from seventeen active and passive AMD treatment sites.
- WVU and partners will design and build bench-scale process to recover REE from AMDtreatment solids.

WVU Rare Earth Element Laboratory

Water Use and Carbon Capture & Storage

Opportunities to treat and reuse extracted water from CO₂ storage

- Water required to operate carbon capture technologies such as amine-based systems.
- Water can also be extracted during geological CO₂ storage to manage subsurface pressure.
- Can we reduce parasitic power (reduce cooling demand) and water needed for capture?
- Can "extracted water" from CO₂ storage be recovered, treated, and reused?

Future Research Opportunities

Applying "big data" to water-energy issues

- What role can machine learning/artificial intelligence play in treatment and management of water in fossil energy production and use?
 - Produced water/flowback water treatment
 - Brine extraction and treatment from CO₂ storage
 - Power plant cooling water management
 - Effluent treatment from power generation
 - Management of discharge from coal ash impoundments
 - Treatment and recovery of value products (e.g., REE)

Thomas J. Feeley, III

Strategic Partnerships Water-Energy Lead

thomas.feeley@netl.doe.gov

QUESTIONS?

Find out more about NETL's water-energy research program at: https://netl.doe.gov/water-energy-research

