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The problem at hand – CO2 emissions from cement/concrete: Concrete, a mixture of portland cement, aggregate, and water is indispensable in construction

(> 30 billion tons produced / year). But nearly 1 ton of CO2 is emitted for each ton of portland cement produced (> 4 billion tons / year). As the vast concrete

market provides an impactful sink for CO2 emissions, the CO2 mineralization process can enable scalable and cost-effective decarbonization in construction.

1. Upcycle industrial wastes and CO2 – Produce low-carbon CO2Concrete products from coal combustion residues, flue gas CO2, and low-grade waste heat

2. Design CO2 mineralization system – Develop process models to inform scale-up design of a “bolt-on” system at coal-fired power plants

3. Field test system using real flue gas – Fabricate and field test CO2 mineralization system to capture around 100 kg of CO2 per day from coal-fired flue gas

4. Product compliance – Ensure CO2Concrete product compliance with industry standards; demonstrate potential utilization in construction applications

• Portlandite (Ca(OH)2) is a highly efficient reactant for CO2 mineralization (CO2 uptake 0.59 g/g) that is also abundant and near cost parity to cement

• Carbonation occurs rapidly at ambient temperature and pressure without carbon capture step, pressurization or gas clean-up (insensitive to SOx and NOx)

• “Green bodies” are shape-stable components that are exposed to flue gas in a carbonation reactor

• Process is flexible: Simple integration at any CO2 emissions source (“stack-tap”) which enables co-location and low-cost processing 
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Portlandite carbonation at dilute 

CO2 concentrations:

• Reaction kinetics are largely 

independent of CO2 concentration 

for flue gas concentrations (≥ 2 %)

• Activation energy is rather low: 

initial surface reaction (3 kJ/mol) 

and (22 kJ/mol) when transport 

barriers may form; confirming that 

no pressurization, CO2 enrichment, 

or significant heating required for 

portlandite carbonation

Effects of microstructure and pore 

saturation on carbonation:

• CO2 diffusion through pore 

structure limits reaction rates 

which scales with scale with body’s 

moisture diffusivity

• Liquid water saturation (Sw) in 

porous cementing microstructures  

influences carbonation kinetics; Sw

≈ 0.1 - 0.2: critical level for CO2

uptake

Computational fluid dynamics (CFD)  

modeling for reactor design:

• Performed CFD to inform design of 

flue gas handling and distribution 

equipment within the CO2

mineralization reactor

• Spatial distribution of CO2 uptake is 

significantly affected by gas flow 

configuration. Greater gas velocity 

and homogeneity offer higher CO2

uptake

Pilot scale system demonstration at

Integrated Test Center, Wyoming:

• Produced around ~200 tonnes of 

CO2Concrete blocks over 12 

demonstration runs that featured 

nearly 4 tonnes of CO2 uptake  

• System performance fulfilled all 

design specifications: (1) achieved 

in excess of 75% CO2 utilization 

efficiency and (2) utilized greater 

than 250 kg of CO2 per 24-h run

Performance of  CO2Concrete 

products:

• CO2Concrete products complied 

with industry standard 

specifications: strength > 13.8 MPa 

and water absorption < 208 kg/m3

• Preliminary lifecycle analysis (LCA) 

indicated ~ 65 % CO2 emissions 

reduction relative to conventional 

CMUs
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