Ensemble Manufacturing Techniques for Steam Turbine Components Across Length Scales Anand Kulkarni, Siemens Corporation DOE Award: DE-FE-0031808

Unrestricted © Siemens AG 2019

siemens.com

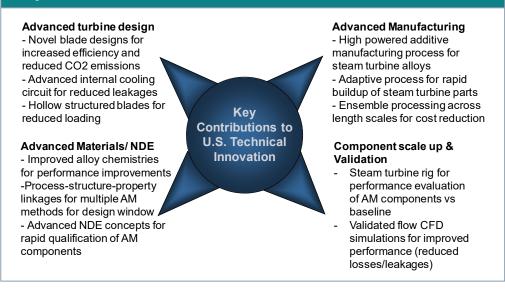
Acknowledgements: DOE Fossil Energy Patcharin Burke – DOE NETL Project Manager

Outline

Introduction Project Objective and Team Project Approach to Meet Technical Targets Digital Manufacturing Efforts for Optimization of Parts for AM Ensemble Manufacturing Techniques and Process Envelope Steam Turbine Materials Development using AMs for Process-Structure-Property (PSP) Relationships Non-Destructive Evaluation (NDE) Inspection of Printed Components Conduct Rig/Engine Testing of AM Steam turbine Components Conclusions

Synergistic Research for Technical Advancements to meet the Cost/Performance Targets Utilizing Additive Manufacturing

SIEMENS

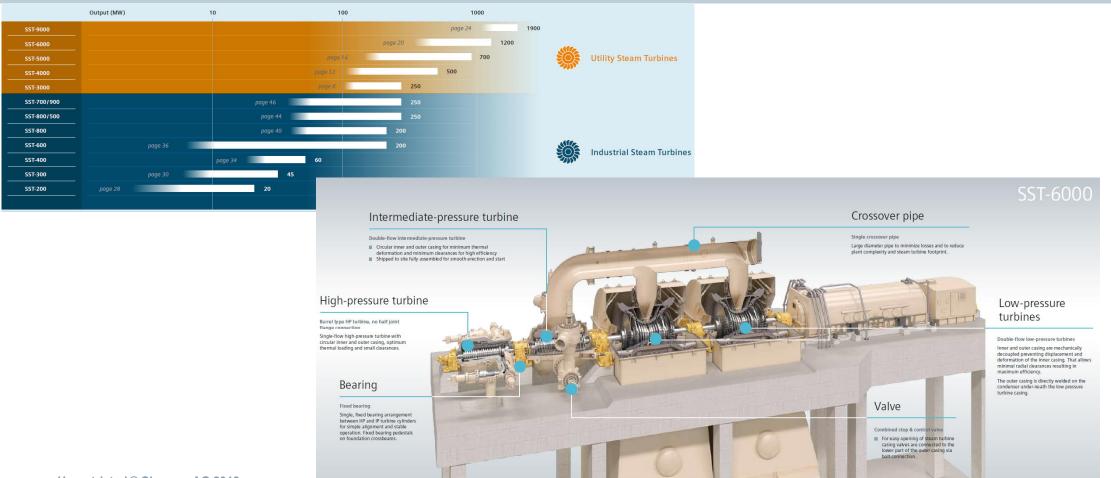

Project information

PI: Anand Kulkarni

Funder: DOE Office of Fossil Energy (FE) - NETL

Strategic Partner: Siemens Energy, Electric Power Research Institute, Oak Ridge National Laboratory, Connecticut Center for Advanced Technology

Key Research Areas


Technical Highlights

Funding Opportunity Objective	Objective of Proposed Program
Applying current AM technologies	The application of existing AM processes (Directed
to an existing part	energy deposition (Optomec/DMG-Mori, Large area
	↓ wire manufacturing), Selected laser melting (EOS-
	¹ M400) and Atomistic diffusion AM (Markforged) for
	redesigned steam turbine components across length
	scales for new/repair opportinities.
Improve cost and performance of	Topology optimization for performance improvements
steam turbine components	for blades, seals and valve components planned. Potential activities include novel blade designs for
	r increased efficiency and reduced CO2 emissions,
	advanced internal cooling circuit for reduced leakages
	and hollow structured blades for reduced loading
Retire all risks associated with a	Advanced NDE development for rapid
follow-on field test	qualification/inspection of AM components.
	T Functional/performance testing of Steam turbine test
	rig for turbine flow CFD validation to demonstrate
	reduced leakages, improved efficiency and reduced
Detential for mensiological second of	CO2 emissions
Potential for repair/replacement of existing part	Potential to develop an on-site repair process via scan
	→ to print option for damage parts to create a 3D model to repair or re-print a new one
An ensemble of multidis	sciplinary technologies to accelerate the
development of material	ls, high-throughput experiments for their
qualification and desi	gn flexibility/topology optimization for
repair/rede	sign of components for AM

Unrestricted © Siemens AG 2019

Steam Turbines - Broad range for 50- and 60-Hz-grids and drive application

SIEMENS

Unrestricted © Siemens AG 2019

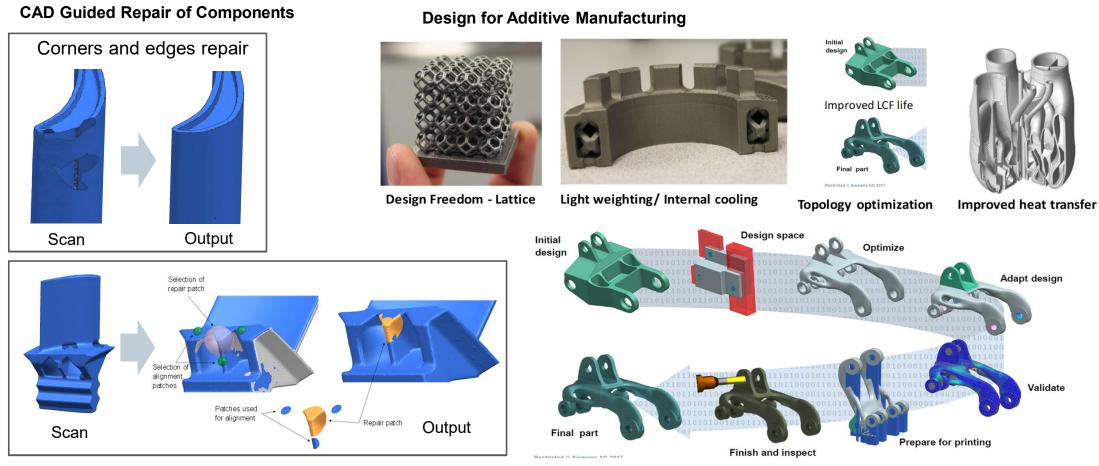
Page 4

Project Team and Activities

SIEMENS

-					Siemens	Overall Project Lead. Activities involve repair component scanning and CAD
	Anand Kulk	arni, Siemen	3			model repair, Design for AM, CFD modeling, Markforged/Selective Laser
Principal Investigator					Melting (EOS-M400) materials development, NX based toolpath design for	
Materials knowledge, Ste	eam Turbines	Contract	dministration	1		repaired and redesigned components, Component buildup, Steam turbine rig
Field Experience, Anand Kulkarni, Siemens		Kevin Go Kathy Sas	Siemens ala, Siemens			testing, Technology maturation into supply chain.
George Atland, Siemens Anett Bergmann, Siemens		- Contract	management	J	ORNL	Large scale metal AM fabrication Lead. This includes materials feasibility
Valerie Golovlev, Siemens	-	Financial Terri Held	Management Siemens			selection, process optimization, controls, and toolpath design for repaired and
Sebastien Dryepondt, ORM Eric Prescott, EPRI	NL	- Financi	ls, invoicing ractor agreements			redesigned components. Component build up.
 Design and analysis Materials performance 			chnical Advisors]]	EPRI	NDE task Lead. Conduct Field and shop deployable NDE for secondary
- Design for additive man	ufacturing	Xavier M o	ntesdeoca, Siemens			check of finished component quality and critical to the life management cycle
Materials/Process develo	opment via AM	Ralf Bell, Thomas F	ool, Siemens			of new and repaired components. Will utilize its in-house state-of-the-art
Kyle Stoodt, Siemens Lonnie Love, ORNL		John Shin Tom Malo	ledecker, EPRI ev. CCAT			volumetric and surface NDE technologies (including standard and advanced
Michael Kirka, ORNL Jeff Crandall, CCAT	-		urbine design and modifications ad Manufacturing			techniques) to determine the best methods and limitations for NDE for the
Henry Babiek - Markforged, EOS M-40	0, Large scale		field issues]		different AM methods and component geometries built within this project.
wire AM, Optomec, DM development	G-Moriprocess		Management ssman, Siemens		CCAT	Direct energy deposition AM Lead. CCAT will utilize their advanced
Non destructive evaluati	on	- Risk an	ilysis			manufacturing assets (Optomec and DMG-Mori systems) to develop
George Connolly, EPRI			management]		processes and fabricate components of interest identified for this program.
John Lindberg, EPRI Anand Kulkarni, Siemens			nt performance validation , Siemens			This includes materials development, build components using additive and/or
 Conventional and advance concepts 	nced NDE		mann, Siemens Fest rig validation			hybrid machine tools, and measure quality metrics for the builds.

Unrestricted © Siemens AG 2019


Project Approach for AM Process Technologies for Field Trial Ready Components for Steam Turbines

SIEMENS

Year 1 Process optimization and design for AM for improved component performance	Year 2 PSP linkages and component buildup for production scale-up	Year 3 Performance improvements for AM Components in Steam turbine test rig
 Technical Progress Topology optimization demonstrated for optimal functionality of components Process parameter for optimal materials microstructure optimization Go / No-Go Down-selection of process parameter for optimal deposit density/surface finish across length scales Design for AM for performance /cost improvements 	 Technical Progress Materials PSP linkages established for design Demonstration of robust production control for AM of advanced steam turbine alloys across length scales <u>Go / No-Go</u> Components demonstrated via AM compared to conventional manufacturing (MRL 4) First Rig test to demonstrate performance improvements of AM components 	 Technical Progress AM component performance improvements in test rig AM of multiple components for repeatability and scale-up Defined product specification for NDE inspection of AM parts Program Success Demonstration of field ready AM components in multi-stages to demonstrate reduced leakages and secondary losses in steam turbine (TRL6)/(MRL5)

Digital Manufacturing Efforts for Optimization of Parts for AM

SIEMENS

Unrestricted © Siemens AG 2019 Page 7 Design for AM needed for improved cost/performance of AM components

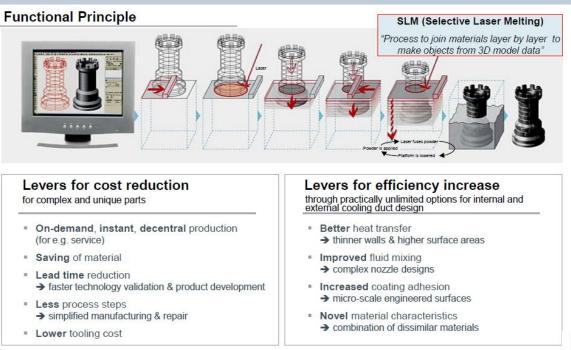
Ensemble Manufacturing Techniques and Process Envelope

SIEMENS

Project Approach for AM Process Technologies for Field Trial Ready Components for Steam Turbines

Unrestricted © Siemens AG 2019

Page 8


SIEMENS

Integrated development: Accelerated iteration cycles in few months

3D (Re-)Design SLM processing Post p	rocessing Instrumentation Testing
	Image: Constraint of the second se
Conventional process "Testing is final validation at the end of development process"	Novel paradigm "Testing is integrated part of development process"
 Sequential development processes 	 Parallel and integrated development processes
 Conservative development approach 	/ Radical development approaches
 Moderate development goals 	Ambitious development goals
 Long development cycles 	 Accelerated development goals, short iteration cycles
Unrestricted © Siemens AG 2019	

Selective Laser Melting

SIEMENS

- Industrial implementation of SLM has successfully started **BUT** additional development needs are substantial:
 - Design for Additive Manufacturing
 - Costs
 - Quality -Robustness and repeatability \rightarrow process control
 - Production Line integration → standardized interfaces are required Unrestricted © Siemens AG 2019

SLM limited and lower experience in comparison to LMD limited by the process chamber (ø: 250 mm, height: 160 mm) nearly unlimited $\geq 0.1 \text{ mm}$ $2 - 10 \text{ cm}^{3}/\text{h}$ flat surface flat preforms 30 - 50 µm 0,03 - 0,1 mm Selective Laser Melting (SLM) x-y scanner = laser leveling laser beam system window gas

powder

movable

part

process

chamber

EOS M400 -1/-4

Build volume - 400 x 400 x 400 mm

High performance components with complex design and high potential to improve customer value (efficiency, durability)

Page 10

DMG-Mori Lasertec 65 3D– Hybrid Precision Machining and Laser **Powder Directed Energy Deposition**

- 5-Axis Metal Powder Additive/Subtractive System
- Milling and Turning ≻
- Additive Working Envelope: 19" x 19" x 13" $\boldsymbol{\succ}$
- Laser Powder Directed Energy Deposition $\boldsymbol{\succ}$
- 2.5 kW Laserline Laser >
- Non-reactive metals (alloys of: steel, nickel, $\boldsymbol{\succ}$ cobalt)
- Build complex components reducing part count ≻
- Wide range of geometries with 5-axis motion $\boldsymbol{\succ}$

SIEMENS

Kulkarni/ Siemens

Unrestricted © Siemens AG 2019 Page 11

Optomec LENS 850R – Laser Powder Directed Energy Deposition

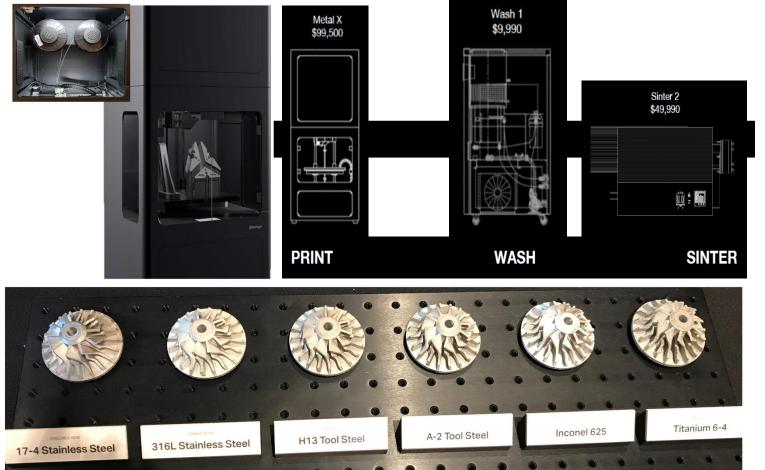
- 5 Axis Metal Powder Additive System
- > 3 Powder Feeders for Mixed and Gradient Builds
- Working Envelope: 36" x 60" x18" (on top of the table)
- Argon Purged Enclosure (PPM Monitoring and O₂ Scrubber Control)
- > 3 kW IPG Fiber Laser
- Reactive and Non-reactive Metals (alloys of: aluminum, steel, nickel, cobalt, titanium, refractory metals; limited studies with graphite, ceramics)

Low Cost Markforged AM Printing

SIEMENS

Industrial Printing Software:

Cloud software turns drawings into high strength printing - To anywhere from anywhere in the world


Industrial Printers:

Full range of printers for plastic, composite, & metal parts on a single platform

Industrial Materials:

Plastics, Composites, and Metals Purpose-built for strong parts with a beautiful finish

Unrestricted © Siemens AG 2019 Page 13

Large Area Wire Deposition

SIEMENS

Tools, dies, construction, and more

Fewer Limitations

- Open-air environment
- MIG welding arm with 6 DOF and 2 rotational degrees
- Print size unrestricted
- Uses low-cost welding torches and wire
- CAD-to-path functionality

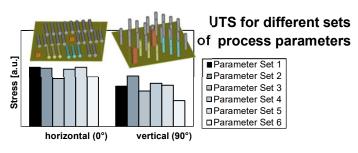
Developmental Activities to Systems

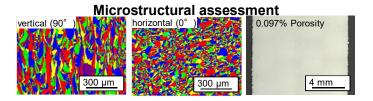

- Design to Part
 - Open source slicing software
- Fast Deposition
 - Multi-deposition technologies being developed
- Geometry Control
 - Residual stress modeling and distortion
- Graded Structures
 - Multi-material feed

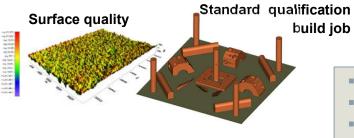
Target Metrics

- High deposition rates: 100 lbs./hr.
- Low cost feedstocks: < \$10/lb.
 - Iron, steel, aluminum
- Large components: > 6ft.

Project AME- Additively Manufactured Excavator




Unre Page 14


Process-Structure Property Relationships

SIEMENS

Process Development

Unrestricted © Siemens AG 2019

Materials Data Generation

Properties compared to cast/forged material (

100%)

% 150
125
100
75
50
25
0 nominal elongation / 175 allov 1 150 alloy 2 125 allov 3 100 75 allov 1 50 allov 2 25 allov 3 250 500 750 1000 0 250 500 750 1000 Ω Temperature / °C Temperature / °C

Distinctive properties in AM materials:

T, t, dynamic, anisotropy, residual stress, distortion, defects, microstructure...

Huge range of data for several temperatures needed: tensile, HCF, LCF, creep/stress rupture, TMF, corrosion, physical props....

Manufacturing Feasibility

X12CrMoWVNbN10-1-1 X21CrMoNiV4-7 17-4 PH Stainless Steel IN625

#Sealing segments - weight: ~3 kg length ~ 48 to 70 mm

#Stationary drum blades - weight: ~0.1 - 0.6 kg length: ~70 to 350 mm

#Rotating drum blades - weight: ~0.1 - 0.6 kg Length: ~70 to 350 mm

#Last stage blades

Second last end stage - weight: ~12 kg Length: ~520 mm

Stationary blade end stage - weight: ~28 kg Length: ~1200 mm

- Material design tools not available yet
- Limited range of materials for gas turbine applications available
- Time consuming and costly validation (full qualification: >> 500 k\$; 1.5 to 2 years)
- Approach: provide i) estimated, ii) limited or iii) fully validated material data

Page 15

Non-Destructive Evaluation (NDE) Inspection of Printed Components

SIEMEN	S
---------------	---

Туре	Process	Example Uses	Rational	Question for Additive
Eddy Current	Surface-Conv.	Airfoil surfaces, blade root	Conventional surface inspections beyond visual methods	New geometries may make inspection more difficult, different
Flexible Eddy Current	Surface-Adv	(exposed), shrouds (verification of visual) and seals	Enhanced inspections for curved geometries, hard to access locations	AM processes give different surface textures
Phased Array UT	VolConv.	Dise attack manta klada na ata	Today's state-of-art for crack detection	New geometries may hinder conventional UT process
TFM/FMC	VolAdv.	Disc attachments, blade roots (attached), repair quality of blades, new blade geometry and quality	Full volumetric Data with less part knowledge, Multiple Data Evaluation Schemes (data science enabled), Non- linear examinations	inspections, new grain structures will attenuate UT signals differently, new potential defect/damage locations
Process Compensated Resonant Technique (PCRT)	VolAdv.	Entire Blade Volume	Quality' Measure for Part-to-part variations, post-test exposure shape and material changes	Can process variations in additive be identified using resonance techniques

EPRI has NDE technologies/techniques used currently on steam turbines and being considered for AM produced components

Milestones and Deliverables

SIEMENS

Task / Subtask Number	Deliverable Title	Due Date
1.0	Project Management Plan	Update due 30 days after award. Revisions to the PMP shall be submitted as requested by the NETL Project Manager.
1.0	Technology Maturation Plan	Update due 30 days after award.
2.0	Topology optimization demonstrated for optimal functionality of components	0.8 year after award.
4.0	Demonstration of Proof of concept (TRL3) for AM of advanced alloys for steam turbine components	1.25 years after award.
4.0	Components demonstrated via AM compared to conventional manufacturing (MRL 4)	1.75 years after award.
6.0	Demonstration of AM components in multi-stages to demonstrate reduced leakages and secondary losses in steam turbine (TRL6)	2.5 years after award.
7.0	Demonstration of AM manufactured process for advanced alloys (MRL 5)	2.75 years after award

	Success Criteria at Decision Points	
Milestone No.	Year 1	Plan
4	 Down-selection of process parameter for optimal deposit density/surface finish across length scales Process parameter optimization and materials characterization of builds to successfully meet defined material properties for the chosen component performance requirements and design constraints 	07/15/20
Milestone No.	Year 2	Plan
7	Components demonstrated via AM compared to conventional manufacturing (MRL 4) - Demonstration of robust production control for AM of advanced steam turbine alloys for redesigned components with low cost/high performance. The success criterial would be repeatability and reproducibility analysis through quality assurance reports from multiple components that meet the product requirements	06/30/21
Milestone No.	Year 3	Plan
9	Demonstration of AM components in multi-stages to demonstrate reduced leakages and secondary losses in steam turbine (TRL6) Successfully conceive, develop, and demonstrate the performance of AM components vs baseline for reduced leakages and secondary losses in a steam turbine. Verify output with existing operational data.	04/06/22

Unrestricted © Siemens AG 2019