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Why Detonation for Coal ACS?

Origin of Detonation:
® Detonation first discovered during disastrous explosions in coal mines,

19t century.

® Puzzling at first, how the slow subsonic combustion could produce stron

mechanical effects. Michae/ Faraday “Chemical History of a Candle” 1848 BNl SRS 5
Museum  of  Industry, Drummond Mine

* First detonation velocity measurement, Sir Frederic Abel 1869 Explosion, 1873
" Coal particles and coal gas interaction, Pellet, Champion, Bloxam 1872

= Berthelot hypothesized shock wave reaction, detonation, 1870

Coal Mine Fast-Flame Deflagration Explosion Coal Mine Detonation Explosion
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Combustion Physics in Science!

Universal Mechanisms Controlling Terrestrial and Astrophysical Explosions

Relate to Type la Supernovae (SNIa) — Thermonuclear Flames

Type Ia Supernova
Carbon-0, Small Star

_Mater-ial
Theoretical and experimental studies of DDT Parameter-free SNla models
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Poludnenko, A., Chambers, J. G, Ahmed, K, Gamezo, V.," A unified mechanism for unconfined deflagration-to-detonation transition in terrestrial chemical systems and type la
supernovae,” Science, Vol. 366, Issue 6465, 2019.
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Project Objectives

Explore Advanced Cost-Effective Coal-Fired Rotating Detonation Combustor:
The proposed project aims to characterize the operability dynamics and performance of an advanced cost-effective coal-
fired rotating detonation combustor for high efficiency power generation

*  Development of an operability map for coal-fired RDC configuration

= Experimental investigation and characterization of coal-fired combustor detonation wave dynamics

=  Computational investigation and characterization of coal-fired combustor detonation wave dynamics

"  Measurement and demonstration of pressure gain throughout the coal-fired RDC operational envelope

" Measurement and demonstration of low emissions throughout the coal-fired RDC operational envelope

Coal-Fired Rotating
Detonation Combustor §

Seeder t
=) ko
N -¢
g oy
Coal Powder i

N Particles

; o
-

Russia: Bykovskii ez 2/ 2013 n

&S UCF



Project Objectives

1.  Operability Dynamics for Detonation Wave:

a. Coal Injection: what is the coal particle size, effective volume fraction, and seeding techniquer The
Jocus here will be on effective refraction/ burning rate and detonation-solid interaction.

b. Initiation: 1s the reaction front that is formed a detonation or a deflagration flame that is acoustically

coupled? The focus here will be on the mechanisms of deflagration-to-detonation transition and composition
enrichment syngas and oxy-coal rotating detonation combustion.

¢. Directionality: which direction do the waves rotate and why? why and when do they change direction?
The focus here will be on the conditions and mechanisms of detonation wave direction.

d. Bifurcation: How many waves are generated and why? Te focus here will be on the driving mechanisms of the
form of detonation wave topology.

2. Performance:

a.  Pressure Gain: How much pressure gain is generated under steady and dynamic operability? The focus
here will be on the direct measurement of pressure gain production.

b.  Ewissions: what level of emissions coal RDC generate under steady and dynamic operability? The
Jfocus here will be on the direct measurement of emissions along with modeling.
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Project Management

Roles of Participants

Aerojet Rocketdyne
(Industry Partner)

Dr. Scott Claflin

DOE ACS Management

g

University of Central Florida
(Prime Recipient)

Dr. Kareem Ahmed
Dr. Subith Vasu

& £

&

Georgia Institute of Technology
(Sub-Recipient)

Dr. Suresh Menon

Innovative Scientific Solutions,

AFRL
(Industry Partner)

Dr. John Hoke
Dr. Fred Schauer
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Research at UCF

Detonation wave velocimetry
and structure conducted at

: : Detonation Propagation in a
Rotating Detonation RDE Exhaust Dr. Ahmed’s UCF lab

Premixed Supersonic Flow . . .
Velo Clmetty Detonation Shock—Part_l'cla-Flame Flow

Engine in Supersonic
Flow Direction
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J. Chambers ez al,
\ ICDERS, 2017

s

J. Sosa ez al, ATAA Aerospace Sciences Meeting, 2018.




DOE - NETL: Aerojet Rocketdyne and University of Central

Florida
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Instrumentation

SASEY

Advanced Optical Diagnostics
= High-speed PIV system (20kHz, 40kHz, 60kHz, 100kH?z2)

= High speed cameras 21,000-2,100,000 frames per second

= High-speed chemiluminescence CH*, OH* (40 kHz, 80kHz, 100kHz)

= Light-field focusing system for flow measurements and visualization
= LabVIEW control hardware and software

* Dynamic pressure transducers (PCB)

0
ey

" Codes: DMD, POD, PIV, Physics-Based Models (Matlab/Fortran) .”‘" ¥

Uniyarsity of Central Florida
. #91364014
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Rotating Detonation Engine

Rotating Detonation Engine: Modeled After the AFRL. RDE and the NETL. (Don Ferguson)

Exhaust Exhaust
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J- Sosa ez al, ATAA Aerospace Sciences Meeting, 2018.
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Optical Setup

PIV and TDLAS —- RDE Annulus Exhanst
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Particle Seeder
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|| »m
Optimized Seed Density
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Operation

1 Wave Detonation 2 Wave Detonation
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RDE Detonation Velocity Measurements
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Detonation Wave Dynamical Control

Dynamic Control of Detonation Waves through Partial Premixing

2 Wave Detonation
(Non-premixed)

Detonation Frequency: 3537
Detonation Velocity: 1623 m/s

\

2 Wave Detonation
(Non-premixed)

3 Wave Detonation
(5% of fuel premixed)

Detonation Frequency: 3298
Detonation Velocity: 1514 m/s

3 Wave Detonation
(5% of fuel premixed)

\

Tl
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Coal RDE Test Fires (carbon)

Non-Reacting Deflagration Detonation
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Detonation Wave Dynamics

Average Concentration 38% Coal Average Concentration 67% Coal
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J. Bennewitz, B. Bigler, S. Schumaker, W. Hargus Jr, Automated image processing method to quantify rotating detonation wave behavior, Review of Scientific Instruments 90 (2019)
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Average Concentration 38% Coal
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Mass Flux (kg/m”2*s)
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Premixed RDE with Coal Particles

Georgia & College of Computational Combustion Laboratory

* UCF RDE geometry without injectors and air slot
* 1-step 3-species kinetics [1] for gaseous H2-air, Euleriar
Lagrangian Approach, Dilute loading

* Detonation is sustained but EL particle tracking cost is
excessive and not practical for parametric studies

oo
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4E+06 840
3E+06 . o
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[1] Kindracki, Jan, et al. Progress in Propulsion Physics 2 (2011): 555-582.
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Coal Modeling Formulation

Georgia @ College off Computational Combustion Laboratory ((((( f

* Mass Transfer: Limited by the reaction kinetics or diffusion of species 1.

dm, . d 4 3
= —Mm¢ = E (§ PcTITE)

dt
* The net mass transfer for carbon particles is thus defined as:
(—%7’,‘108) ks: Kinetic-limited
. P, ks =0.86e ; k,,: Diffusion-limited
Me = 1 D T.,,: mean gas/particle temperature
k_s + E ke = 4.86¢( d ) ¢: Mechanism factor
1.RTy D,: Diffusion coefficient

* 2-steps infinite-rate gas-phase reactions [?
Cy + 0, - CO, (partial oxidation)
Cq +0; - CO (oxidation)

1. Baek, S. W., Sichel, M., and Kauffman, C. W. Combustion and Flame 81, 3-4 (1990), 219-228
2. Balakrishnan, K., and S. Menon. Combustion Science and Technology 182.2 (2010): 186-214.
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Georgia @ College off Computational Combustion Laboratory ({((( f

Computation Cost for Non-Premixed Detonation Studies

15 Injectors 8 Injectors 80 Injectors RDE
Grid 16.2M 8.5M 55M
Blocks 9947 5263 26,560
Cores 1280 1280 3200
AX in 50 um 50 um 50 um
At min 3.0ns 3.0ns 3.0ns
Cost* ~ 24 hours I' ~ 4 hours [ ~ 72+ hours [

» Cost of full RDE is too excessive using available resources

* Focus on a subset assembly to assess injection/mixing sensitivities

» For example, the 8-injector linear array assembly is reasonably cost effective
» Can be used for multiple parametric studies with available resources
« But limitations of the approach needs to be factored into the study

[*»*] Time required for the detonation to propagate through the entire domain
[***] Time required to reach quasi-steady state periodicity
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Georgia @ College of Computational Combustion Laboratory

80-Injector Non-Premixed RDE (full rig in UCF)

- e e . . g T K
* Sensitive to initialization i/ 4 -

' lzazo

— High P, T charge just
— 1D H,/air detonation solution ;:go
100

— Char. Inflow/outflow, adiabatic
walls

* Solution carried long enough to
establish rotating detonation

* High mass flow rate in this case
results in 4-wave stable system

e Study underway with reduced
mass flow to achieve 1 or 2
detonations

* Two-phase cases deferred for
later

1. Baurle, R., Alexopoulos, G., and Hassan, H. Journal of Propulsion and Power 10, 4 (1994), 473-484.
2. Poinsot & Lele, J. Comp. Phys. 1992
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Linear Array Detonation Studies
* 15-injector & 8-injector unwrapped array to isolate two-phase detonation
features

* Use pre-detonation tube to create shock-to-detonation-transition (SDT), get a
DW into chamber, and then investigate if detonation sustains in a 2-phase
mixture

* H, injected as before but with different coal-air mixture in the oxidizer stream

Parameter Value
Kinetics 7-steps 7-species H,/air mechanism [
2-steps 3-species infinitely fast ¢/ 0, [
Coal Diffusion and kinetics limited mass transfer [? ot
Myir 0.15 kg/s
My, 0.0052 kg/s — 15 injectors 111

Fuel Inlets

0.0027 kg/s — 8 injectors
Tin,HZ; Tin,Air 300 K

-
Air Inlet

1. Baurle, R., Alexopoulos, G., and Hassan, H. Journal of Propulsion and Power 10, 4 (1994), 473-484. —
2. Baek, S. W., Sichel, M., and Kauffman, C. W. Combustion and Flame 81, 3-4 (1990), 219-228 15—|njector Array
3. Donahue, L., F. Zhang, and R. C. Ripley. Shock Waves 23.6 (2013): 559-573.
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With Reacting dp = 10 um Particles

15 Injectors

kg

Vpx 3l T K] HRR |
I r W
105 684 1263 1842 2421 3000 -le+11 1.2e+11 3.4e+11 5.6e+11 7.8e+11 le+12

8 Injectors | E———

8-injector similar to the 15-injector setup and is much more cost-effective

|
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Georgia & College of Computational Combustion Laboratory ((«/

Tech

Particle distribution for d, = 10 pum and 2 um

Many patrticles for smaller diameter 7
Uniform injection still results in non- \_ |
uniform distribution at throat & in chamber A

Larger variations for smaller particles
What happens if coal is mixed uniformly?

4 Contour of Number Density
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LRDE: Gas-Phase H,; — C, — Air with 70% my,

Without Cy
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Computational Combustion Lab Aerospace (‘(((
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LRDE: Gas-Phase H,; — C, — Air with 70% my,
Without C, HRRy, air [%] P/Py [-]
5 1075
le+12 = 50.00
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RDE Center Body

(Polished)
Flow
Channel
Signal In
Off-Axis Signal Out

parabolic Mirror (Containing Thermodynamic Information)

Beer-Lambert Law I
_ln _

I = Transmitted Intensity (
Iy = Incident Intensity (

S;; = Linestrength (

Pitch Fiber
(Single Mode)

Off-Axis
Parabolic

, Fiber Port
Mirror

I,) ~

Catch Fiber
(Multi-Modal)

i

2srHz.

cm”™ )
atm

T = Static Temperature (K)

X = Mole Fraction

P = Static Pressure (atm)
L = Path Length (cm)
¢ij = Lineshape Function (cm)

cm?srH. z)

Sij(1X;PLpij | v — vy,
ZZ j J( 01) Pronees |:> -‘7
e .

v = Optical Frequency (Hz)
Voy; = Line Center Optical Frequency (Hz)

Subsctipts
i = Quantum Transition

Jj = Atomic/Molecular Species Diode Laser
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@ Experimental Measurements: TDLAS for NOx, CO

co
a0 Co,, 4 |
H,O .

. H,0 . | Spatio-temporally resolved for

| understanding evolution of emissions

o
&

20} _ { Carbon Monoxide (target) and common

interfering species (CO,, H,O, N,O)

absorption features at T = 296 K and P
=1 atm (Left); and T = 1500 K and P =
Wavenumber (cm'1) ) . Wavenurﬁﬁer (cm 1) h -

Absorption Ca_ef. Ecm"j

=

m
(=3

=
n

40 atm (Right).

sy
=
=
"
i
=

|

2100 2150 2200

NO, NO,, and interfering water
absorption features at T = 296 K and
P =1 atm (Left); and and P =40atm
(Right). Note the marked increase in
absorption for NO and NO, at high

pressures and the minimal water

Absorption Coef. {cm'1]
Absorption Coef. (cm™")

interference  around 1600cm™ and

1900cm™.

Laded LILLEY M e e —. Diagnostics will be validated using shock

= -1 .
Wavenumber cm' ) AL A tube and high temperature cells
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Combustible Solid Particles

Characterization of Materials

Experimental minimum tube diameter and Kgr-factor

Dust Size Kst Amin
pm bar-m/s m
I U.S. W. Sub-Bituminous coal” < 100 59° 0.6 |
~ Cornstarch | 10 160 0.3
| Anthraquinone | 2x6x6 274 0.4
1 Aluminum 36 x 36 x 1 359 0.121

Note: a - Gardner et al. (1986); b - Fangrat et al. (1987).

F. Zhang et al., Journal of Shock Waves, 2001 As B“RY
SO U Pt T T RO

Bituminous Coal, Anthracite Coal,

s EnilE Carbon Black
(Al coal sizes as low at 75 micrometers with the
Carbon Black (very fine) exception of carbon black. Carbon black can be

Sfound as low as 18 nanometers)

Cannal Coal (Russians coal of choice)

SIGMA-ALDRICH

Aluminum Iodate Hexahydrate (for doping) Anthraquinone Powder, Aluminum
Nanoparticles, Liquid Isopropyl

Liquid Isopropyl nitrate (for doping, need a new injection scheme nitrate

&S UCF




Combustible Solid Particles (C3)

Asbury provides LOW SULFUR Bituminous Coal commonly known as Bit
Coal. This material is ground and screened to specifications commonly used
for foundry sand addition, brake linings and other industrial applications.

Chemistry

% SULFUR 0 . .
% VOLATILE 34 44 374 38.6
% MOISTURE 0 7 52 3.4
% ASH 0 10 8 7.1
% FIXED 50 60 546 54.3
CARBON

The percentages above/below are “Targets™ and not meant to be a guarantee.

Sizing
US Standard Sieves in % Mesh
Product +20 +30 +40 +100 +200 -200
+18 (850 {600 (425 (150 75 75
{1.18mm) Microns) Microns) | Microns) | Microns) Microns) Microns)
C3 Target 1] 2-9 6-18 §-15 27-36 | ——m o max 27.5
C3 Typical 1] 75 16 14.8 32 127 16.9
D4 Target | ————n -1 1-12 5-16 28 - 46 14 - 27 12-40
D4 Typieal | ————— 0.3 39 72 373 g 30.3

® Packaging mcludes 50 Ib bags or 2000 Ib super sacks.
¢ Export Packaging and containerization available.
* Shipping to any port destination.

In the US or abroad...

Let Asbury handlie your Bit Coal requirements

n B Rv 405 Old Main Street « PO Box 144 = Asbury, New Jersey 08802
Phone: 908.537.2155 = Fax: 908.537.2906
c A R B O N S

An 150 3007 Corparation
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15-injector Llnear Array with H2-air Detonation

A detonation enters the chamber and transition to a
non-premixed detonation front above the injectors

Gas-phase detonation successfully achieved

* Multiple detonation traverses can be studied for
different mixing conditions using this setup

Y-slice at mid-
chamber

Premixed
experiment

Non-Premixed
simulation

Burr, Jason R., and Kenneth Yu. 53rd AIAA/SAE/ASEE Joint Propulsion Conference. 2017.
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Gas-Phase H, — C, — Air Combustion

: : Cy + 0, — CO;
8 Injectors Grid C, +0.50 - CO

 |deal case: coal gasified and premixed with air @600

w

K HRRy, sir [5]
* H,injection is unchanged as before. le+12
 Gas-phase reaction of C; — O, starts when the local T -7.8e+11
1 . . . . 5.6e+11
reaches 950 K [ - mimics carbon particle ignition s et11
« Detonation propagated mainly due to coal combustion 1.2e+11
hiit etriictiire ic different thgn prire H?-air case -le+11
Yoo €0 mas fraction Yi0 H,0 mas fraction

s overlaid with pressure 025 overlaid with CO
02 02 reaction rates HRR,

0.15 r"‘,. 0.15 - w
o . oD\ e {ah
0.00 E s 0 8e+11
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1.Donahue, L., F. Zhang, and R. C. Ripley. Shock Waves 23.6 (2013): 559-573.




