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Motivation and Objectives

• Perform Conceptual Design of Turbomachinery

• Define bearing requirements

• Perform Bearing Conceptual Design

• Identify risks with immersed generator

• Perform economic analysis of sCO2 WHR unit

• Currently compressor station underutilize WHR

• sCO2 WHR bottoming cycle 

• 40% simple cycle → (+) 50% combined cycle

• Savings in fuel costs/CO2 emissions

• Improve compressor station profits



WHR Turbomachinery Drivetrain Concepts
• Current high-power drivetrain configs.

• Oil-bearings for shaft support
• Gearbox for high-speed to low-speed power 

transmission
• CO2 leakage 

• Oil-Free non-Hermetic Concept
• All bearings → gas bearings → lower power 

loss→ design simplification
• Still requires oil system for gearbox
• CO2 leakage 

• Oil-Free Hermetic Concept
• All bearings → process gas bearings 
• Mechanically decoupled system → No GB
• No CO2 leakage → completely hermetic
• Requires a high speed line and low speed line
• Low speed line has 2 modes

• 60Hz power generation → grid
• >60Hz NG compressor drive



Conceptual Design Process



Thermodynamic Cycle

• Cascaded Brayton Cycle
• PGT25+G4 GT used for study (LM2500 engine 

platform) 
• ~34MW @ ~40% simple cycle efficiency
• Max GT exhaust temperature → 510 C @ 89 kg/s
• Efficiency debit from WHR system accounted for

• Cycle has two distinct loops
• High temp loop → low speed line
• Low temp loop → high speed line 
• High/Low temp recuperators



Turbomachinery Aero-Design

• Trade-Off Analysis
• Flow path root diameter 
• Number of stages
• Stage height
• Speed
• While checking rotordynamics

• Low speed Expander speeds
• NG centrif. compressor survey
• 60Hz power generation
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Electromagnetic Design

27KRPM
12KRPM

• PM Synchronous machine
• High torque density and efficiency
• 3 Phase electric power generation
• Samarium-Cobalt PM; 160M/s surface speed
• Torque correlation used to initially get L

• FEA used for electromagnetics/thermals

• Analysis Output
• Losses

• Stator and rotor core
• Copper losses
• Windage

Magnetic Gap Shear stress (13kPa-300Kpa)



High-Speed Drivetrain Rotordynamics

• Lateral Rotordynamic Model
• 3 bearing machine architecture
• Stacked-tie-bolt rotor construction
• Single stage overhung centrif. compressor
• 3 stage axial expander (integral to shaft for stiffness)
• Direct drive/rigidly coupled PM starter/generator

• Undamped Critical Speed Map
• Used to position critical speeds
• Anchoring of bearing stiffness values
• Ensuring tie bolt frequency > MCOS
• Cross-check 1G shaft deflections 
• Operation above 3rd critical speed

below 4th critical speed



Damped Rotordynamic Eigenvalues & Unbalance Response

• Calculation of damped forward whirl mode eigenvalues

• Log dec and Frequency calcs for varying
bearing damping values

• Complement w/synchronous response
to rotor unbalance

• Diminishing return for vibration response
with damping increase

• Balance log dec values with dynamic
bearing loads



Low Speed Expander Turbine
Foil Design

• Low temps from WHR application advantageous

• Low cost material selection 

• Can consider dove-tailed foil designs

• T-Root bucket design

• 1st Stage worst case FEA model

• Stiffness diameter of shaft defined through this 
analysis→ feeds into rotordynamics



Low Speed Drivetrain
12krpm Expander

Low Speed Drivetrain
12krpm PM Generator



Oil-Free Hermetic High-Speed Drivetrain: 27KRPM



Oil-Free Hermetic Low-Speed Drivetrain: 12KRPM



Immersed CO2 Generator
Cavity Thermal Stability

Gas Bearing DOE: Windage
Leakage, Load Capacity

RADIAL BEARING PAD THRUST BEARING PAD

• Heat generation from PM EM needs
to be addressed

• CFD thermal analysis; 1/12 stator-rotor sector

• Weak link→electrical  insulation

• Mitigated using: Stator (H2O) cooling jacket
and Magnetic gap cooling (CO2), 

• Bearing CFD analysis using real gas props. includes
- Setting desired running gap under load
- Use orifice map DOE and inlet pressures
- Calculation of leakage and windage

• Gas bearing show an order of magnitude less
heat generation compared to oil-bearings



Compressor Station WHR Economics

• sCO2 WHR performance
• 41% → 51.3% cycle efficiency increase
• Fuel consumption/MWh reduction by 20%
• CO2 emissions/MWh reduction by 20%
• System cost 10-15M; 3-4 breakeven years
• Emission-free WHR

• EPA’s New source review: stations in
non-attainment areas hesitant to upgrade

• WHR concept offers compressor stations 
options: 60Hz power gen or compressor drive

• Comparison to ORC*
• Power conversion rate ~2X
• Break even years cut by half

* Sweetser, M., Leslie, N., “Subcontractor Report: National Account Energy Alliance Final Report for the Basin Electric Project at Northern Border

Pipeline Company’s Compressor Station #7, North Dakota.” ORNL/TM-2007/158. Oak Ridge National Laboratory, Oak Ridge, TN (2007)



Conclusions

• sCO2 WHR unit shows  to increase efficiency from 41% → 51.3%
with investment break even years =  3-4

• sCO2 Compared to ORC WHR: Power conversion rate increase
nearly 2X and break even years cut in half

• Risks:
• High-speed drive train: lightly loaded bearings but required to

traverse third critical speed (bending mode)

• Low-speed drive train: Highly loaded bearings but operates
below third critical speed (bending mode)

• Generator cavity thermal balance/stability


