Advanced Manufacturing to Drive Down Capture Costs
Improving Performance Through Additive Manufacturing

Additive manufacturing, using 3D printing, enables the development of components for carbon capture equipment that intensify heat and mass transfer, improve process performance, and reduce overall equipment size, lowering capital and operating costs.

DOE/FE/NELT is currently supporting three projects that are using 3D printing to produce rapid prototypes with the potential to capture CO$_2$ more efficiently and economically.

- **Lawrence Livermore National Laboratory**: Designing and fabricating high-efficiency reactors using novel geometries that support transformational solvent-based capture technologies.
- **ION Engineering**: Developing a 3D-printed absorber with integrated packing and internal cooling capabilities to help optimize solvent-based capture.
- **Oak Ridge National Laboratory**: Producing intensified devices that combine heat and mass transfer operations to drive down costs of solvent-based capture processes.

**Progress to Date**

- **Silicon-based gyroid structures** have been created with one micron resolution using stereo-lithography.
- **Both plastic and metal absorbers** have been 3D-printed for testing and analysis.
- **An aluminum version of a column packing structure** with built-in heat exchange has been successfully 3D-printed.