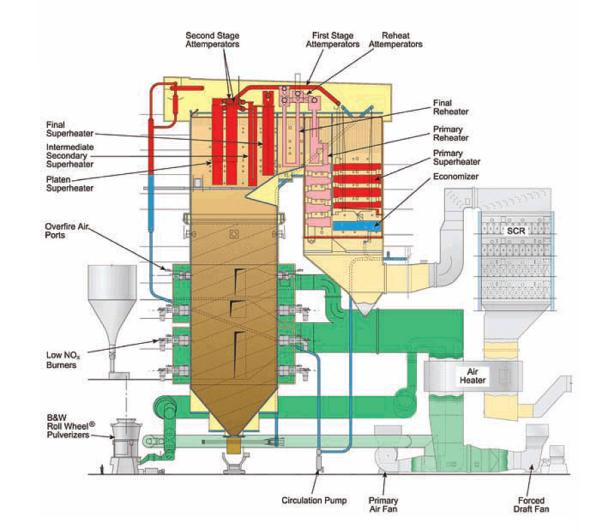
Characterization of Long-Term Service Coal Combustion Power Plant Extreme Environment Materials (EEMs) DOE FE0031562

EPRI Program 87 Materials and Repair

Steven Kung, John Siefert, John Shingledecker

2019 Crosscutting Research Review Meeting Pittsburgh, PA April 10, 2019

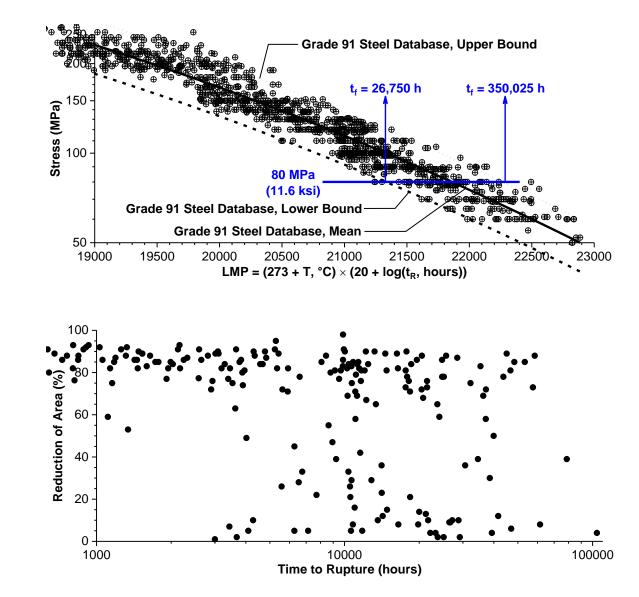


Technical Basis

Existing coal-fired fleet is >39 years

- Many already beyond the original anticipated design life
- Expectation is another 30 years
- Most units were designed for baseload operation
- Experience of some level of flexible operation
 - Intermittent deployment of renewables
 - Low natural gas prices

www.epri.com



Challenges

Limited or no information is available from service-aged materials

- Most lifing models are based on testing of new materials
- There is a need for large scale evaluation/characterization of postservice materials/components
 - Establish links between microstructure and long-term performance
 - Provide a body of data for development/validation of lifing models

www.epri.com

Project Objectives

- Obtain sufficient quantity of relevant EEM components and appropriate documentation
 - CSEF steels, 300-series H grade stainless, advanced austenitic SS, nickel-based alloys, and DMWs
 - Time, temperature/pressure, number of cycles, repair history, coal/fuel, etc.
- Perform detailed analysis
 - NDE and microstructural and mechanical characterization
- Link composition and microstructural features to long-term behavior
 - Secondary phases, inclusions, decomposition/evolution, damage
 - Service performance/destructive evaluation, TTP relation, CDM
- Compare measured degradation with service history based on available models (when applicable)
- Develop a comprehensive database of mechanical properties and quantitative microstructural information
 - Make all data available to DOE and 3rd-party researchers for future modeling

Project Tasks 1-3

Task 1: Project Management and Planning

- Reporting and managing activities in accordance with the PMP
- Technical workshop to facilitate technical exchange of

Task 2: Identification and Removal of Material Components

- Literature survey
- Component sampling plan / Characterization and mechanical testing plan
 - Eddystone Unit 1 is highest priority!
 - 25 30 component samples identified
- Removal and Transport of Materials

Task 3: Metallurgical Characterization of Component Samples

- Perform macro-scale assessment
 - Photography, dimensional measurements, 3D scanning (when possible), NDE
- Perform micro-scale analysis
 - Chemical, oxide thickness, hardness, grain size, phase analysis, advanced characterization

5

Project Tasks 4-6

- Task 4: Fabrication of Test Samples for Mechanical Testing
- Task 5: Mechanical Testing and Estimate Remaining Life of Component Samples
 - Uniaxial tensile testing
 - Fracture toughness testing
 - Charpy V-notch / notch bar impact testing
 - Fracture toughness testing
 - Base metal creep
 - Cross weld creep
 - Creep fatigue
 - Estimation of remaining life
- Task 6: Data and Material Repository
 - Sample inventory and uniform data labeling system
 - Consistent structure to link data from each test sample to individual component
 - Web-based portal for data collation/retention (or NETL EDX data sharing site)
 - On-site storage/repository for physical samples

- Limited based on size, shape, conditions, cost, etc.
- ~20 creep tests are anticipated

6

Selected Components for Investigation

Туре	Material	Source	Component	Vintage/ Hours	Quantity Received
	½Cr-½Mo-¼V	Utility #3	CrMoV Turbine lead piping (straights, ends and girth weld)	~270,000 <u>hrs</u>	One lead
Ę.	Grade 22	Utility #3	Grade 22 seam-welded HRH piping	435,000	
Ferritic	Grade 22	Eddystone #2	Main steam piping - large radius Grade 22 bends to SP valve	1960	2 bends (15' long)
Ľ	Grade 91	Utility #2	Grade 91 superheater outlet headers	141,000 hrs	2 headers
	Grade 91	Utility #4	Seam-welded Grade 91 hot reheat outlet header	>100,000 hrs	1 section, 30" long
			25 		
	316H OC	Eddystone #1	Main steam piping from boiler to SP valve, including bends and large and small bore welds	1983	2 sections, 20'long
SS	316H OC	Eddystone #1	Main steam piping in penthouse (large/small bore welds)	1983	2 sections, 8' long
s	316H	Eddystone #1	Outlet piping from junction header turbine. Straights, large radius bend, girth weld(s) and small bore penetration welds	1963	2 leads, each about 25' long
	316H	Eddystone #2	Main steam collection header with link piping	1960	2 headers
	316H, 316H to Grade 22	Eddystone #1	SP valve assembly, with 316H/P22 DMWs	1968	1 assembly, 2 DMWs
Ns S	316H, 316H to Grade 22	Eddystone #1	Turbine J-loop piping, with 316H/F22 DMWs	2007	2 loops, 2 DMWs
SWMG + SS	316H, 316H to Grade 22	Eddystone #2	Main steam piping, with 316/P22 DMW	early 1990s	2 DMWs
+	321H, 321H to Grade 22	Utility #3	Austenitic stainless steel superheater tubing	290,000 <u>hrs</u>	Many
ss	347H; 347H to Grade 22	Utility #4	347H FSH tubing; DWMs between 347H and T22	~100,00hr	~100 <u>ft</u>
	321H, 321H to Grade 22	Utility #5	Austenitic stainless steel superheater and reheater tubing	>250,000 <u>hrs</u>	Numerous
Turbine	Variable	Eddystone #1	Super pressure rotors	1960	2 rotors
	www.epri.com		© 2019 Electric Power Research Institute, Inc. All rights reserved.		

Component Samples

Factors considered for material evaluation

- The metallurgical properties associated with selected component materials after longterm service at high temperatures and pressures:
 - Tensile strength and ductility
 - Creep strength and ductility including stress-state effects
 - Thermal fatigue resistance
 - normally only an issue for thick sections or severe transient cycles
 - Fracture resistance
 - to assess critical crack size
 - Steamside oxidation and exfoliation resistance
 - Wear resistance (particularly for coatings/surface treatment or hardfacing)
 - Weldability –frequently linked to δ -ferrite content in the weld metal for austenitic stainless steels
 - Effects of fabrication and processing on properties

High Level Perspective of Testing Plan

Component Description	Heat of Material	3D Dimension	NDE for Damage	Microstructure for Damage	Detailed Microstructure	Mechanical Property Testing
	316 (1960)	\checkmark	\checkmark	\checkmark		
Eddystone Unit 1	316 (1968)	\checkmark	\checkmark	\checkmark		
onit I	316OC (1983)	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Eddystone	316 (1960)	\checkmark	\checkmark	\checkmark	\checkmark	
Unit 2	DMW Gr. 22-316H	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
	Grade 91 HDR body	\checkmark		\checkmark	\checkmark	\checkmark
	Grade 91 forging	\checkmark				
Utility #2 Unit 2	P22-F91 Girth Weld	\checkmark	\checkmark	\checkmark	\checkmark	
	F91-P91 Girth Weld	\checkmark	\checkmark	\checkmark	\checkmark	
	P91 End Cap	\checkmark	\checkmark	\checkmark	\checkmark	

High Level Perspective of Testing Plan

Component Description	Heat of Material	3D Dimension	NDE for Damage	Microstructure for Damage	Detailed Microstructure	Mechanical Property Testing
Utility #3	347H SH Tubing			\checkmark		
Unit 3	347H to T22 DMWs (SH Tubing)			\checkmark	\checkmark	\checkmark
Utility #3 Unit 4	Gr. 22 HRH Pipe	\checkmark				
Utility #3 Unit 5	1/2Cr-1/2Mo- 1/4V pipe w/ Girth welds	\checkmark	\checkmark	\checkmark	\checkmark	
Utility #4	347H Tubing			\checkmark		
Utility #5 Unit 1	321H SH Tubing with WO			\checkmark		
Utility #4 Unit 2	LSW HRH Hdr Sample		\checkmark	\checkmark		

Microstructural Assessment

316H Components – Based on 'Material Heats'

Details	1960 Vintage, Unit 1	1968 Vintage, Unit 1 (cast valve body)	1983 Vintage, Unit 1	1960 Vintage, Unit 2	1983 bend to valve body weld	Additional weld TBD	Cracked sections identified by NDE
Bulk composition	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Macro imaging	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Hardness	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Microstructure	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Oxide scale thickness	\checkmark			\checkmark			
Large area grain size evaluation	\checkmark	\checkmark	\checkmark	\checkmark			
Local inclusion analysis	\checkmark			\checkmark			
Inclusion type/distribution	\checkmark	\checkmark	\checkmark	\checkmark			
Oxide scale composition	\checkmark			\checkmark			
Bulk phase mapping	\checkmark			\checkmark			
Assessment of segregation	\checkmark	\checkmark	\checkmark	\checkmark			
Particle mapping	\checkmark			\checkmark			
Local particle composition	\checkmark			\checkmark			
Local phase confirmation	\checkmark			\checkmark			

Grade 91 and DMW Components – Based on 'Material Heats'

Details	Grade 91 Forging	Grade 91 Header Body	Girth Weld b/w Header Body and Forging	Tube to Header Weld w/ Damage	DMW b/w Gr. 22 and 316H
Bulk composition	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Macro imaging	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Hardness	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Microstructure	\checkmark	\checkmark	\checkmark	\checkmark	\checkmark
Oxide scale thickness	\checkmark	\checkmark		\checkmark	\checkmark
Large area grain size evaluation	\checkmark	\checkmark			
Local inclusion analysis	\checkmark	\checkmark			
Inclusion type/distribution	\checkmark	\checkmark			
Oxide scale composition	\checkmark	\checkmark			
Bulk phase mapping	\checkmark	\checkmark			
Assessment of segregation	\checkmark	\checkmark			\checkmark
Particle mapping	\checkmark	\checkmark			
Local particle composition	\checkmark	\checkmark			
Local phase confirmation	\checkmark	\checkmark			\checkmark

Mechanical Testing

Mechanical testing

Time independent

- Fracture toughness
- Less relevant tests... tensile, charpy v-notch (may be performed for comparison or informational purposes)

Time dependent

- Smooth bar creep
- Notch bar creep
- Feature-type cross-weld
- Crack growth
- Creep-fatigue

Nature of samples and information dictate test plan

Testing will be based on relevance to in-service damage and/or operation

Testing Plan – High Level Summary

Item	Number of Tests
Bulk composition analysis	~20
Base metal creep testing	~10
Low temperature testing	TBD
Cross-weld creep testing	~10

- Emphasis on creep testing
 - Likely to find examples of service-induced fatigue damage for evaluation
 - May not need to develop this type of test data
 - For example, notable craze cracking seen in the 316H valve body
 - Additional (low T) tests such as tensile, charpy, fracture will be performed to help communicate the need/value for creep testing

Project Status

- Task 2 Component Retrieval
 - Complete

Task 3 - Characterization

- Metallurgical evaluation initiated
 - 316H main steam piping from Eddystone Unit 2
- NDE in progress
 - Information helps selection of specific locations on components for detailed analyses
 - Two Eddystone components completed (top two on right)
- Task 4: Fabrication of Mechanical Samples
 - Sections cut off from components for specimen machining

DOE Extreme	Environment	Materials -	Preliminary	Schedule	Eddystone NDE
DOL LAUCINC	Linvironment	Waterials	i i cininai y	Juncaure	Eddystone HDE

	Eddystone Unit 1 - Turbine DMWs and J Loop	Piping (G188)	
	Surface conditioning of G188 to be complete	17-Jan-19	Shop Team
	Deliver G188 to building 3	17-Jan-19	Daniel Duggins
	Data Acquisition G188 Complete	11-Feb-19	Nuc. NDE
	Return G188 to building 1	12-Feb-19	Daniel Duggins
	Eddystone Unit 1 - Super Pressure Valve and Main S	Steam Piping (G185)
	Surface conditioning of G185 to be complete	11-Mar-19	Shop Team
	Deliver G185-1 and G185-2 to Building 3	12-Feb-19	Daniel Duggins
	Data Acquisition G185 Complete	15-Mar-19	Nuc. NDE
	Return G185 to building 1	16-Mar-19	Daniel Duggins
	Eddystone Unit 1 - Main Steam Junction header O	utlet Lead (G1810)	
B E	Surface conditioning of G1810 complete	2-Apr-19	Shop Team
	Deliver G1810 to Building 3	16-Mar-19	Daniel Duggins
	Data Acquisition G1810 Complete	8-Apr-19	Nuc. NDE
Non .	Return G1810 to Building 1	9-Apr-19	Daniel Duggins
	Eddystone Unit 2 - Main Steam Collection H	eader (G186)	
E E Hor.	Surface Conditioning of G186 complete	3-Apr-19	Shop Team
JET.KDA	Deliver G186 to Building 3	9-Apr-19	Daniel Duggins
2 PM	Data Acquisition G186 Complete	10-Apr-19	Nuc. NDE
	Return G186 to Building 1	11-Apr-19	Daniel Duggins
	Eddystone Unit 1 - Main Steam Oultet Material: P	enthouse (G1813)	
	Surface Conditioning of G1813 complete	4-Apr-19	Shop Team
	Deliver G1813 to Building 3	11-Apr-19	Daniel Duggins
	Data Acquisition G1813 Complete	11-Apr-19	Nuc. NDE
	Return G1813 to Building 1	12-Apr-19	Daniel Duggins
	Eddystone Unit 2 - Main Steam Piping: Grade 22 o	316H DMW (G1850)
	Surface Conditiong of G1850 Complete	9-Apr-19	Shop Team
	P Deliver G1850 to Building 3	12-Apr-19	Daniel Duggins
A PA	Data Acquisition G1850 Complete	15-Apr-19	Nuc. NDE
	Return G1850 to Building 1	16-Apr-19	Daniel Duggins

18

Planned Technology Transfer in 2019

Project Update

- Meeting with DOE-NETL: March
- DOE-NETL Crosscutting Review Meeting: April
- P87 Tech Transfer Week (for utility members): June
- Joint EPRI-123HIMAT Conference on High
 - **Temperature Materials: October**
- Collaboration
 - Opportunity for engagement from research community
 - If interested, let us know

Project Tasks and Schedule

· · · · ·												5 <u>77</u> 56		1.125	
				Budget Period 1			Budget Period 2		Budget Period 3						
				(1/25/18 - 1/24/19)		(1/25/19 - 1/24/20)			(1/25/20 - 1/24/21)						
Task	Start	End	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1
Task 1 - Project Management	1/15/2018	1/15/2020													
Task 2 - Component Retrieval	1/15/2018	12/31/2018													
2.1: Literature Survey								39 A			5 - 43				/ d:
2.2-2.3: Sampling and Characterization Plan							1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -								5 83 1
2.4: Delivery of EEMs															
Task 3 - Characterization	7/1/2018	10/31/2020													
3.1: Macro Characterization											4				
3.2: Micro Characterization			8	1.6											6 Q.
3.3: Nano Characterization				0 (1											5
Task 4 - Speciment Machining	7/1/2018	12/31/2019									Į				
Task 5 - Mechanical Testing	8/1/2018	10//31/2020													
5.1: Tensile Tests															
5.2: Fracture Toughness Tests Test	6 		8	50								50 S			2 B.S.
5.3: Impact Toughness Tests											2)) 2 9	0			5
5.4: Parent Metal Creep Tests				:7											
5.5: Cross Weld Creep Tests															
5.6: Creep-Fatigue Tests	21 D		3 (d)	1.6 X											
5.7: Remaining Life Estimates															
Task 6 - Data Management	1/1/2018	11/30/2020													

Together...Shaping the Future of Electricity

Selected Components for Creep Test Evaluation

Material Type	Component Description	Creep Test Evaluation
316H; 1960 vintage	Eddystone Unit 1 turbine piping between junction header and turbine stop valves	Yes
316H; 1960 vintage	Eddystone Unit 2 base metal upstream from DMW	Yes
316H; 1968 vintage casting	Eddystone Unit 1 super pressure valve body #4	Yes
316H; 1983 replacement pipe	Eddystone Unit 1 bend into super pressure valve body #4	Yes
316H cross-weld	Eddystone Unit 1 weld between super pressure valve body and replacement piping	Yes
316H cross-weld	Eddystone Unit 1 original weld in turbine piping	Yes
Grade 91 header body	Utility #2 outlet header	Yes
Grade 91 forging	Utility #2 outlet header	Yes
Grade 91 header body to Grade 91 forging	Utility #2 outlet header	Yes
Grade 91 tube to header weld	Utility #2 outlet header; location to be informed by NDE	No

Base Metal Creep Testing – Based on 'Material Heats'

Sample ID	Temp °F (°C)	Stress ksi (MPa)	Est. Time to Failure (hours)
Gr 91-1	1157 (625)	14.5 (100)	5,000
Gr 91-2	1157 (625)	14.5 (100)	5,000
316H-1	1247 (675)	13.05 (90)	5,000
316H-2	1247 (675)	13.05 (90)	5,000
316H-3	1247 (675)	13.05 (90)	5,000
316H-4	1247 (675)	13.05 (90)	5,000
316H-5	1247 (675)	13.05 (90)	5,000
316H-6	1247 (675)	13.05 (90)	5,000
316H-7	1247 (675)	13.05 (90)	5,000
316H-8	1247 (675)	13.05 (90)	5,000

Cross-Weld Creep Testing – Based on 'Material Heats'

Sample ID	Temp °F (°C)	Stress ksi (MPa)	Est. Time to Failure (hours)
316H-W1-1	1247 (675)	13.05 (90)	5,000
316H-W2-1	1247 (675)	13.05 (90)	5,000
316H-W3-1	1247 (675)	13.05 (90)	5,000
316H-W4-1	1247 (675)	13.05 (90)	5,000
316H-W5-1	Spare*		
Gr91-1	1157 (625)	11.6 (80)	4,000
Gr91-2	Spare*		
DMW-1	1067 (575)	11.6 (80)	4,000
DMW-2	1157 (625)	5.8 (40)	4,000
DMW-3	Spare*		

Pedigree Information

Unit	Heats of Material	Run-Hours	# Starts	Steam Temperature	Steam Pressure	Operation History	Remarks
Exelon Eddystone Unit 1	316 (1960)	1960 - 2/1983 130,520 1997-2011 ~83,890	1960 – 2/1983 ~311 1997-2011 ~329	1200°F (to 1965) 1130°F**	5000 psi (to 1965) 4496 psi**	Base Loaded	Information from 1983- 1997 has been cequested. Current response from Exelon is "Chase That's a tough one. I don't think we kept a running tally on starts and run hours and the folks that may have any direction on that have all retired. Dennis"
	316 (1968)	1997-2011 ~83,890	1997-2011 ~329	1130 F			
	316OC (1983)	1997-2011 ~83,890	1997-2011 ~329	1130°F**	4496 psi**		
Exelon Eddystone Unit 2	316 (1960)	~298,000	~740	1050°F**	3523 psi**	Base Loaded	
	DMW b/w Gr. 22 and 316H	1997-2011 ~90,749	1997-2011 ~483	1050°F**	3523 psi**	Base Loaded	Weld replaced circa 1990
Utility #2 Unit 2	Grade 91 header body	~141,000	~3,300	1067°F***	2590 psi***	Base Loaded 1991-1995	In Service 1991 - 2015
	Grade 91 forging	~141,000	~3,300	1067°F***	2590 psi***	Cyclod	
	P22-F91 Girth Weld	~141,000	~3,300	1067°F***	2590 psi***	Cycled 1995-2011	
	P91 End Cap	~106,000	~2,900	1067°F***	2590 psi***	Base Loaded 2011-2015	Replaced in 1997
* Nominal Design Conditions		** Nominal Plant Operating Conditions			*** Nominal Component Operating Conditions		

www.epri.com

25

© 2019 Electric Power Research Institute, Inc. All rights reserved.

Pedigree Information

Unit	Heats of Material	Run-Hours	# Starts	Steam Temperature	Steam Pressure	Operation History	Remarks
Utility #3 Unit 3	347H SH Tubing	415,725	N/A	1050°F (~250k		Base Loaded	
	347H – LAS DMWs (SH Tubing)			hrs.) 1025°F (~165k hrs.)**	1800 psi**		
Utility #3 Unit 4	Gr. 22 HRH Pipe	412,140	N/A	1050°F (~251k hrs.) 1025°F (~161k hrs.)**	1800 psi**	Base Loaded	
Utility #3 Unit 5	1/2Cr-1/2Mo-1/4V w/ Girth welds	266,701	N/A	1050°F (~142k hrs.) 1025°F (~125k hrs.)**	2400 psi**	Cycled	Temperature Excursion in 2003 – Reached 1470°F
Utility #4	347H Tubing	85,328	85	~975°F***	~3700 psi***	Base Loaded	
Utility #5 Unit 1	321H SH Tubing with Weld Overlays	293,081	591	1000°F**	2800 psi**		We currently have limited information on these tubes.
Utility 4 Unit 2	LSW HRH Hdr Sample						

* Nominal Design Conditions

** Nominal Plant Operating Conditions

*** Nominal Component Operating Conditions

26

Base Metal Creep Testing Perspective for 316H (Data per EPRI correlation of 316H database)

- 100 MPa @ 675°C = 899 or 3,644 hours
- 90 MPa @ 675°C = 1,619 or 6,565 hours
- 80 MPa @ 675°C = 3,126 or 12,677 hours
- 70 MPa @ 700°C = 1,920 or 7,787 hours
- Note: design hoop stress ~70 MPa

 Comparison of 16-8-2 weld metal and 316H data overlap for database of available information. Thus, assumed lives for base metal above are assumed for cross-weld tests

Additional Materials in EPRI Archive

Type of Component	Extent of Material	Material(s)	Temperature	Time	Damage
SH Outlet Header	Large Sections	P91	565°C	130,000 hours	Unknown
SH Outlet Header	Minimal Sections	P91	540°C	115,000 hours	Unknown
SH Outlet Header	Large Sections	P91	585°C	89,000 hours	Extensive
SH Outlet Header	Large Sections	P91	568°C	79,000 hours	Extensive
DMW	~15	T23 to SS	540°C	115,000 hours	Unknown
DMW	~15	T23 to T91	540°C	115,000 hours	Unknown
DMW	Minimal sections	T91 to SS	540 to 650°C	103,000 hours	Yes, variable
Hot RH Branch Connection	Ring Sample	P92	605°C	70,000 hours	Through-wall leak
SH Outlet Branch Connection	Large Section	P91	540°C	70, 000 hours	Through-wall leak

