

Civil and Environmental Engineering

Engineering Sustainable Infrastructure for the Ruture

Applying Anodic Stripping Voltammetry to Complex Wastewater Streams for Rapid Metal Detection

FE0030456

David Jassby, Shengcun Ma

Department of Civil and Environmental Engineering

UCLA

Ashok Mulchandani, Guo Zhao

Department of Chemical and Environmental Engineering

UCR

- Motivation: Water is a critical component of thermoelectric power generation
 - Changes in water availability and quality can impact electricity production
 - Increasing water temperatures
 - Decreasing flows
 - Recent drought in SE forced a drop in power production
 - Alternative water resources will be needed to meet cooling and other demands of thermoelectric power plants

- Wastewater is an attractive alternative water source
 - Reliable flows
 - Uniform water quality
 - Co-located with population centers
- Wastewater (mining, municipal, O&G) already used in several locations
- Heavy metals often detected in wastewater
 - Discharge of water containing heavy metals is highly regulated
 - Pb (2.5 μg/l)
 - Cd (0.72 μg/l)
 - As (150 μg/l)

- In raw wastewater, some heavy metals are in particulate form (>0.45 μm)
 - Removed by coagulation/sedimentation
- Dissolved metals sail through the wastewater treatment process
- Critical to monitor incoming and discharged water quality from thermal power plants
- There is a need for sensing methods that enable highly sensitive, rapid, and autonomous detection of metal contaminants in complex waste streams
 - Method must detect ALL forms of heavy metals

- Overall Objective: Development of a lab-on-achip (LOC) electrochemical sensor capable of measuring heavy metal (Pb, Cd, and As) concentrations in complex aqueous streams, such as wastewater
- Technology: Miniaturized anodic stripping voltammetry (ASV) sensor using highly sensitive reduced graphene oxide (rGO)/metal complexes combined with appropriate sample pre-treatment steps, for the autonomous and rapid detection of metals
- Challenges with current practice: Grab samples analyzed with expensive analytical equipment (e.g., ICP-MS)
 - Measurements not in "real time"
 - If contamination is present, hours/days can pass before detection, resulting in fines
 - Expensive (highly skilled labor and equipment)

The electrochemical detection of heavy metals using Anodic stripping voltammetry

Anodic stripping voltammetry : Electro-deposition of metal ions onto the electrode surface, after a potential scanning, get multiple stripping currents of heavy metals, the current is proportional to the concentration of heavy metals.

Principle

- A lab-scale activated sludge reactor has been built to simulate different steps of wastewater treatment
 - Primary (coagulation/flocculation/sedimentation)
 - Secondary (biological)
 - Tertiary (sand filter)
- Heavy metals will be spiked into feed stream and speciation, extraction efficiency, and removal will be evaluated at each step
- Real wastewater (from Hyperion wwtp) will be used as well

- Heavy metals in wastewater come in multiple forms
 - Dissolved (ionic)
 - Carbonates
 - Sorbed/chelated by organic matter
 - Bound to iron and/or manganese
- Some heavy metals are bound in large (>0.45 μm) particulate matter
- Sensing method must capture all forms of heavy metals
 - ASV only capable of detecting/measuring ionic metal species
- An understanding of heavy metal speciation from different wastewater treatment steps is needed
- Appropriate pre-treatment steps must be integrated into sensing device
 - Transform all metal species to ionic form

- Fractionation of heavy metals in raw wastewater (measured using ICP-MS)
 Pb: ~30% as large particulate (> 0.45 μm)
 ~67% as small particulate (> 5 kDa)
 ~3% as "dissolved"
 Cd: ~15% as large particulate (> 0.45 μm)
 ~80% as small particulate (> 5 kDa)
 ~5% as "dissolved"
 - As: Almost all as "dissolved"

- It is assumed that large (>0.45 μm) particles will be effectively removed by primary wastewater treatment step
 - coagulation/flocculation/sedimentation
- Important to understand speciation of heavy metals in fraction <0.45 μm
 - Likely present in influent to power plant
 - Need to identify appropriate pre-treatment steps for ASV detection
 - Will depend on metal speciation

- Sequential extraction of heavy metals in raw wastewater (<0.45 μm)
 - Pb: 29% bound to organics 42% bound to Fe/Mn, 22% bound to carbonate 7% ionic
 - Cd: 3% bound to organics 34% bound to Fe/Mn 25% bound to carbonate 38% ionic
 - As: 3% bound to Fe/Mn 8% bound to carbonate 89% ionic
- Likely that Pb and Cd detection by ASV will require more extensive pre-treatment

- Sequential extraction of heavy metals in secondary effluent (<0.45 μm)
 - **Pb:** No ionic species detected Primarily bound to iron and NOM
 - **Cd:** Less ionic Cd detected Primarily bound to carbonate and NOM
 - **As:** Significantly less ionic As Mostly bound to carbonate
- Likely that all metals will require pre-treatment for ASV detection
- These are extreme conditions drying drives complexation

- Fabrication and Application of Electrodes for ASV detection of Cd(II) and Pb(II)
 - Synthesis and physico-chemical characterization of Bi nanoparticles (BiNP)-functionalized reduced graphene oxide (rGO-Bi) electrode material
 - Fabrication and electrochemical characterization of rGO-BiNP modified electrode for ASV
 - Evaluation of rGO-BiNP modified electrode to detect Cd and Pb
 - Testing and validation of ASV detection in synthetic water

- Synthesis of Bi nanoparticles (BiNP)functionalized reduced graphene oxide (rGO-Bi)
 - 1. Disperse 20 mg graphene oxide in 40 mL ethylene glycol
 - 2. Add 340 mg $Bi(NO_3)_3.5H_2O$ GO/ Bi^{3+} solution
 - 3. Add 0.456 g NaBH₄ and react at 90 °C for 2 h with stirring
 - 4. Centrifuge, wash and dry rGO-BiNP nanocomposite

• Fabrication of rGO-BiNP-modified electrode and ASV protocol

Material Characterization - SEM

Material Characterization - EDAX

Bi Lα1

Material Characterization – FTIR

 Absorption peaks 120 GO nanosheets (BiO)₂CO₃@rGO of OH, C=O, C-O 100 (BiO)₂CO₃@rGO-Nafion **Fransmittance** % and C-OH of 80 C=0 CO22graphene oxide 60 (blue), disappear 40 epoxy post reduction S-0 20 (red)

 Material Characterization – XRD

Results show the BiNP to be Bismuth subcarbonate $((BiO)_2CO_3)$

- Electrochemical characterization of rGO-BiNP-modified electrode (Fe(CN)₆⁻³)
 - Nafion coating reduces interference from negative ions
 - Nafion increases impedence

- Effective detection of Pb, Cd, and As
 - Ionic solutions
- Low ppb detection
 - Very sensitive
 - Can detect below MCL
 - Good linear response
- Measurement takes <10 minutes
 - Cleaning, stabilizing, reducing, and oxidizing
- Without NPs, sensing is not great...

- Fabrication and Application of Electrodes for ASV detection of As(III)
 - Synthesis and physico-chemical characterization of Fe₂O₃/Au nanoparticles-functionalized rGO electrode material
 - Fabrication and electrochemical characterization of rGO-Fe $_2O_3$ /Au modified electrode for ASV
 - Evaluation of rGO-Fe $_2O_3$ /Au modified electrode to detect As
 - Testing and validation of ASV detection in synthetic water

- Low temperature fabrication of Fe₂O₃ (80° C, pH 9)
- Au NPs decorated on Fe₂O₃ by in-situ reduction of AuCl₄⁻
- SEM, EDAX, and XRD confirm presence of AuNP@Fe3O4 NPs
- NPs were drop-cast on GCE electrode

- Highly sensitive detection of As(III)
 - Very low ppb levels
 - Good linear response
- Significantly higher detection with AuNP@Fe3O4 modified GCE

- Complicating factors
 - Other aqueous constituents
 - NOM-complexed metals
 - Overlapping redox peaks
 - Other metal ions
 - Overlapping oxidizing potentials (Zn)
- Pre-treatment is critical for effective detection
 - Transform all metals to ionic form
 - Mineralize organics (?)
 - In progress...

Synthetic wastewater sample	Detected By SWASV (µg/L)	
	Cd(II)	Pb(II)
With humic acid	0	6.43±0.69
Without humic acid	13.45±0.59	2.16±0.73

Plans for Remaining Technical Gaps/Challenges

- Explore ability of ASV to detect heavy metals that are ionic and/or complexed with organics, carbonates, and Fe/Mn
 - Real wastewater matrices
 - Design appropriate pre-treatment steps (pH modification, chemical oxidation)
- Fabricate a microfluidic electrochemical cell with sensor arrays for ASV and evaluate its electrochemical performance
 - Open source hardware and software
- Construct and test an LOC ASV device
 - Real wastewater

Acknowledgements

• Postdocs:

- Yiming Su
- Jingbo Wang

• Graduate Students:

- Xiaobo Zhu
- Caroline Kim
- Unnati Rao
- Arpita Idya
- Khor Chia Miang
- Bongyeon Jung
- Shengcun Ma
- Yiming Liu

