THE UNIVERSITY OF ALABAMA AT BIRMINGHAM

Knowledge that will change your world

Continuous Water Quality Sensing for FGD Wastewater


Samuel Misko UAB EITD

University of Alabama's EITD Group

Complex System Design and Integration

Consistently delivered on well over \$100M of NASA contracts over past 10+ years

- Sole Supplier of Powered Cold Stowage Units for NASA ISS transport operations
 - Polar (+4C to -95C)
 - o GLACIER (+4C to -160C)
 - MERLIN (+48.5C to -20C)
 - o Rapid Freeze (-185C)
 - o Iceburg (-95C)

Project Team – Expertise *Metrohm*

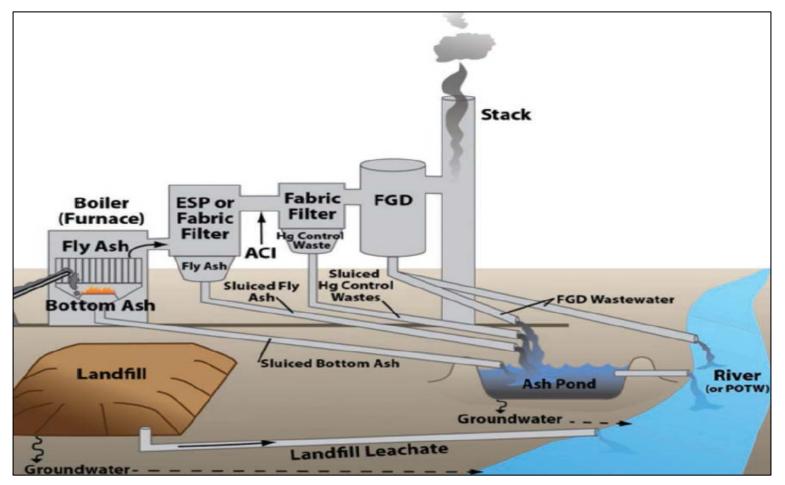
A Leading Manufacturer of High Precision Instruments for Chemical Analysis

- Swiss based parent company
- Extensive Application Knowledgebase
 - o Application Notes
 - Highly Educated & Experienced Support Staff
- Electrochemistry Instruments
 - o Benchtop 884 VA Voltammetry Unit
 - o On-Line ADI2045 VA Process Analyzer

Unique Resources

Water Research Center (WRC)

- Opened in 2012 by Georgia Power & Electric Power Research Institute (EPRI)
 - Operated by Southern Research
- Located on-site at Georgia Power's Plant Bowen
 - 9th Largest U.S. Power Plant in Net Generation
 (3.38 MW)
- 7 Focus Areas to include:
 - Low Volume Wastewater Treatment
 - Moisture Recovery



- Zero Liquid Discharge
- Water Modeling, Monitoring, & Best Management Practices

Problem Statement - Overview

Key waste streams from updated USEPA guidelines.

Proposed Effluent Guidelines for the Steam Electric Power Generating Category. 2015; Available from: http://water.epa.gov/scitech/wastetech/guide/steam-electric/proposed.cfm.

Problem Statement – *EPA Requirements*

Steam Electric Power Generation Effluent Guidelines for Coal-fired Power Plant Wastewater

WASTE STREAM	PARAMETER	DAILY MAXIMUM	30-DAY AVERAGE
FGD WASTEWATER FOR DISCHARGE	As (µg/L)	11	8
	Se (µg/L)	23	12
	Hg (ng/L)	788	356
	NO ³ /NO ² as N (mg/L)	17	4.4
FGD WASTEWATER UNDER VOLUNTARY INCENTIVE	As (µg/L)¹	4	
	Se (µg/L)	5	
	Hg (ng/L) ¹	39	24
	TDS (mg/L)	50	24

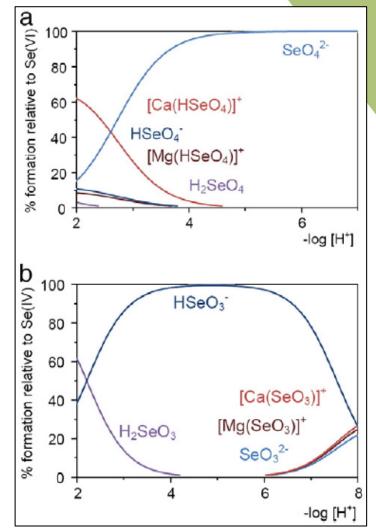
Proposed Effluent Guidelines for the Steam Electric Power Generating Category. 2015; Available from: http://water.epa.gov/scitech/wastetech/guide/steam-electric/proposed.cfm.

Problem Statement

Measuring Selenium Concentrations

Possible formations of Selenium in FGD Wastewater

• Selenate • $p M^{2+} + q H^+ + r SeO_4^{2-} \rightleftharpoons [M_p H_q (SeO_4)_r]^{(2p+q-2r)+}$


• Selenite

o $p M^{2+} + q H^+ + r SeO_3^{2-} \rightleftharpoons [M_p H_q (SeO_3)_r]^{(2p+q-2r)+}$

Where:

- M = Mg, Ca, Sr, Mn, Cu, Zn, Cd, etc.
- H = Protonation of selenium species

Torres et al., "Selenium Chemical Speciation in Natural Waters."

Proposed Solution

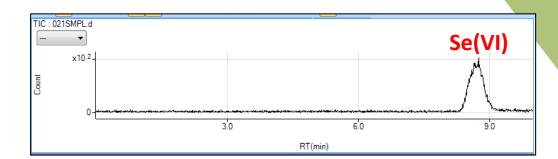
Concentration Measurements

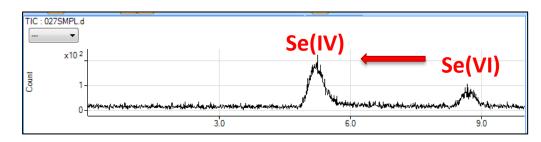
884 VA Voltammetry Unit

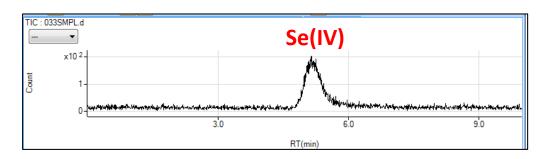
- Low Limit of Detection:
 Se: 300ppt (COTS)
- Multi-Mode Electrode Pro
 Hanging Mercury Drop
- Ag/AgCl Reference Electrode
 3 mol KCL electrolyte
- Pt Auxillary Electrode

THE UNIVERSITY OF

ABAMA AT BIRMINGHAM




Proposed Solution


Novel Sample Preparation Methodology

- Se Species Conversion for Detection
 - Se(VI) -> Se(IV)
 - o Se(0) -> Se(IV)

Proposed Solution

Improve COTS Detection Method

- **COTS Method:**
 - Cu Standard
 - Ammonium Sulfate
 - **D** EDTA
 - Problems Encountered
 - □ Scaling on Electrodes

□ Insufficient Sensitivity with high dilution

- **New Proprietary Method:**
 - One Liquid Reagent \mathbf{O}
 - o <100ppt LOD</p>

 $H_2SeO_3 + 6H^+ + 6e^- = H_2Se + 3H_2O$ 1)

2)
$$Cu(II) \rightarrow Cu(I) (-0.15 \sim 0.2 V)$$

3)
$$2Cu(I) + Se(-II) = Cu_2Se$$

 $Cu_2Se + 2H^+ + 2e^- = 2Cu^0(Hg) + H_2Se$ 4)

5) V = -0.70V

.

LOD & LOQ Testing

Spiked DI Water & Spiked Treated FGD Wastewater

LOD Testing with DI Water				
Replicate	10ppb Se(VI)	10ppb Se(IV)		
1	10.8	9.5		
2	10.1	10.3		
3	10.1	10.4		
4	10.7	10.2		
5	9.9	10.1		
6	9.5	10		
7	9.8	10.4		
AVG	10.1	10.1		
STDEV	0.44	0.29		
Calculated MDL	1.44	0.96		

LOQ Testing with Treated FGD Wastewater

Replicate	10ppb Se(VI)	10ppb Se(IV)
1	9	9.7
2	9.8	10
3	10.9	10.5
4	9.4	10.3
5	9.4	10.7
6	9.2	10.6
7	9.8	11
AVG	9.6	10.4
STDEV	0.58	0.41
Calculated MDL	1.91	1.34

Knowledge that will change your world

Solution Automation

Prototype Assembly

- Assembled at Metrohm facility in Tampa, FL
 - o Two-week effort
 - o UAB Student Participation

Solution Automation

2 Month In-Field Deployment

- Deployed at Plant Gaston
 - Co-located with Two other EPRI study systems
 - □ AFS
 - □ HDME Voltammetry
 - Two FGD Wastewater
 Treatment Pilots
 - Frontier
 - Wood Chip

Solution Automation

Subsequent Laboratory Optimization

- Optimize Control Software
- Re-optimize Sample
 Prep & Detection
 Methods for:
 - Two sources of Raw FGD Wastewater
 - Two sources of treated FGD Wastewater

Automated LOD Testing

Spiked DI Water

LOD Testing with DI Water				
Replicate	8.7ppb Se(VI)	10.3ppb Se(IV)		
1	8.04	10.15		
2	8.03	10.91		
3	8.38	10.13		
4	8.79	10.9		
5	7.36	9.02		
6	7.41	9.1		
7	7.21	10.41		
AVG	7.9	10.1		
STDEV	0.54	0.71		
Calculated MDL	1.79	2.35		

Areas of Additional Work

Identification of Barriers to Commercial Implementation

- HDME implementation
 - Capillary Changes
 - Elemental Hg Refill / Disposal
- Ag/AgCl Electrolyte Reservoir
 Increase capacity
- Reduce Reagent Usage
 - Reduce tubing dia. and digester volume

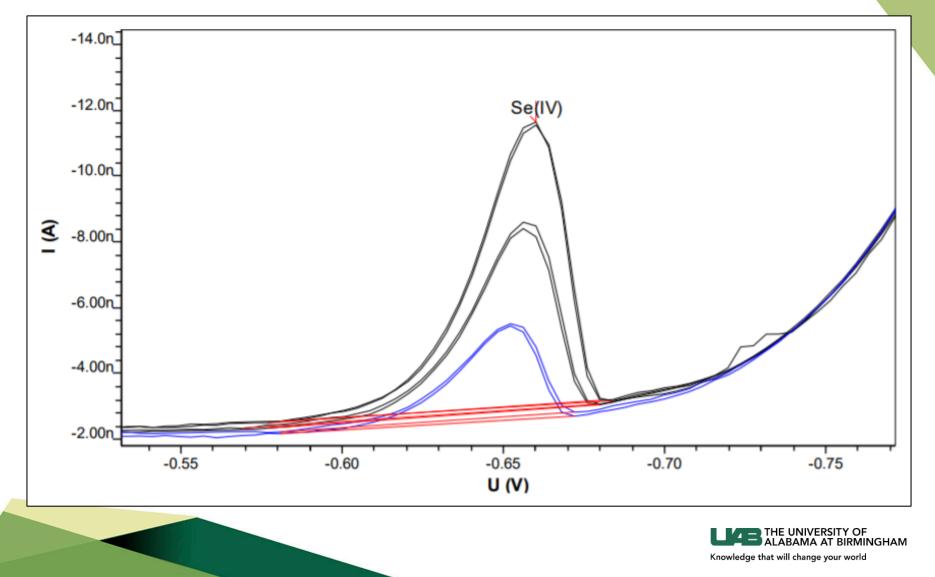
Areas of Additional Work

Identification of Barriers to Commercial Implementation

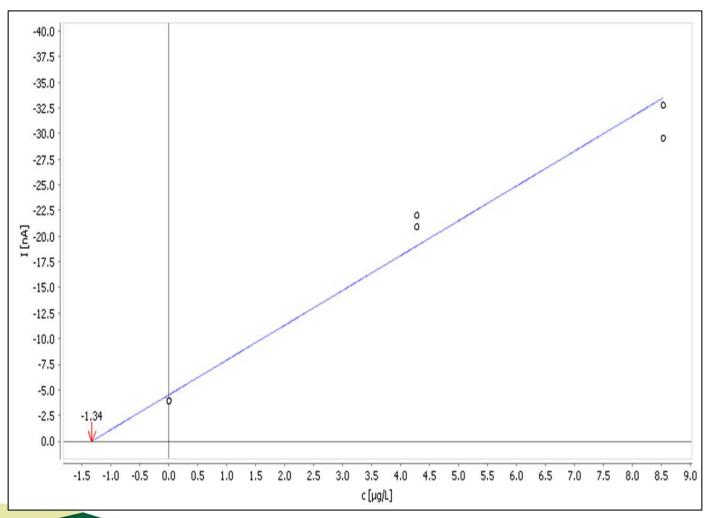
- Continue optimization of sample prep method to reduce measurement latency to <1hr.
 - Reduce 40min digestion time
 - Implement threading to allow for more control of concurrent operations
- Implement Intelligent Algorithms for

 Monitoring of Standard Addition calibration method, or
 Periodic External Calibration method

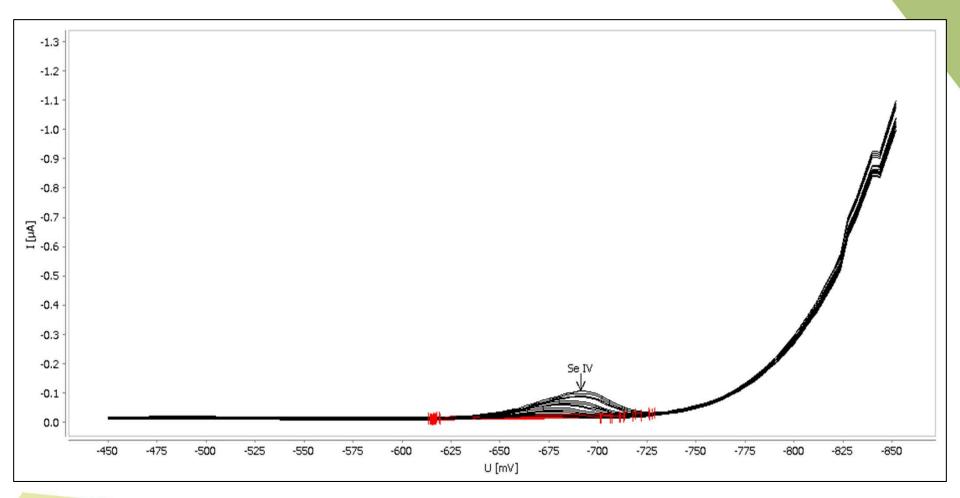
Options for Absolute Measurements


Concentration Determination

	External Calibration	Standard Addition
Advantages	 Easy to prepare Quick Widely used technique 	 Overcome matrix differences
Limitations	 Need to match matrix of calibration solutions and samples 	 Require at least three aliquots/runs for each sample Run lengths become much longer Need to have some idea of the concentration in the sample prior to analysis Spike levels: 2-5X Precision and accuracy depend on spike levels

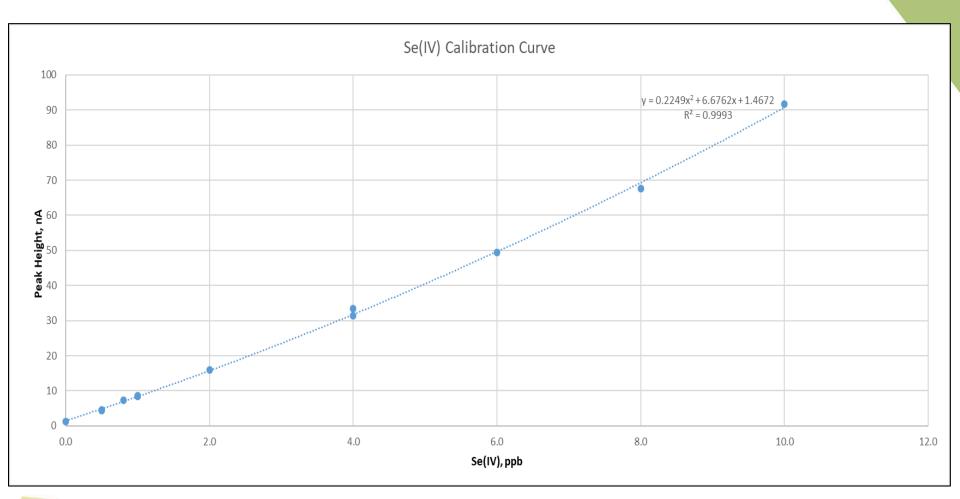

Concentration Determination

Standard Addition


Concentration Determination

Standard Addition

Concentration Determination *External Calibration*



Concentration Determination

External Calibration – Quadratic Curve Fit

Path Forward

Long-Term In-Field Study

- Transfer responsibilities to Metrohm
 - Installation & Maintenance
 - Additional Design Optimization
- Seek alternative funding sources
 - Optimize method for diverse array of FGD wastewaters
 - Different Treatment Systems
 - Different Sources of Raw FGD Pond Water

University Coal Research

Benefits as Direct Result of Award

- UAB Student Training (2X)
 - Project Management
 - Analytical Chemistry
 - Mechanical / Electrical / Control Software for Industrial Analyzer System
- UAB Facilities / Equipment for Analytical Chemistry Research
 - Over \$38k in equipment purchased directly
 - Over \$15k in equipment donated by Metrohm

University Coal Research

Benefits as Direct Result of Award

- Flagship collaboration between Southern Research and UAB Engineering
 - 3 additional proposals submitted to date
- Metrohm / DoE / Coal Power Industry
 - Early stage Proof-of-Concept On-line Se Analyzer completed
 - Identification of key design challenges that prevent commercial implementation of HDME Voltammetry solution
- Pending Patent on Sample Prep Method (SR)

Questions?

