

Modular Gasification for Syngas/Engine Combine Heat and Power Applications in Challenging Environments (Funding by DOE/NETL Contract DE-FE0031446) MAKING COAL RELEVANT FOR SMALL SCALE APPLICATIONS

UAF is an AA/EO employer and educational institution and prohibits illegal discrimination against any individual: www.alaska.edu/nondiscrimination/.

WHERE IS FAIRBANKS?

PROJECT PARTNERS

UAF: Plant & Expertise Diesel Generator

GASIFIER

HMI: Intellectual Property Decades Experience

WorleyParsons: Detailed Engineering Cost Estimating Service

Cost Share: Sotacarbo, HMI, UAF, GVEA, Aurora Energy

PROJECT OBJECTIVE

Demonstrate small scale coal gasification to fuel reciprocating engine generators

- Cost effective coal generating capacity for small applications
- Provides load following services
- Ideal for islanding systems
- Local jobs

UAF POWER PLANT

UAF POWER PLANT

UAF POWER PLANT

UAF'S ORIGINAL DESIGN

WHERE DOES FAIRBANKS POWER COME FROM?

WHY COAL GASIFICATION? COSTS FOR REGULATING 27 MWe OF WIND POWER

Fuel	Syngas Project (UAF)	Diesel (GVEA)	Natural Gas (not an option)
Capital Cost	\$46 million		
Fuel Costs + other O&M	\$114.6/MWh \$8/MMBtu	\$161.5/MWh \$18/MMBtu	\$17/MMBtu (\$15.20-\$20.20)
Wind Regulation Costs (13.6 MW UAF capacity)	\$11.8M syngas/engine + tars/oils/DEG	\$23.7M (oil)	
Efficiency, LHV	34%	17.9% (turbines)	
Simple Payback	<4 years	Base Case	

THE PROBLEM: INTERMITTENT GENERATION

Cheapest

Energy

Energy

"Free" Energy

THE SOLUTION: COAL ENABLING WIND

"Free" Energy

Cheapest Energy

Cheapest Energy Expensive Energy

Combus

EFFICIENCY vs. LOAD

COMBINED CYCLE LM6000 GAS TURBINE PLANT - NPEP

EFFICIENCY vs. LOAD

COMBINED CYCLE LM6000 GAS TURBINE PLANT - NPEP

THE EQUIPMENT

MODULARITY and **SCALING**

Multiple gasifier trains and engines can create powerplants from 1 MWe to 30 MWe+

Gasifier/Engine System is Modular and Scalable

AK-DGGS IDENTIFIED 37 VILLAGES WITH COAL NEARBY

RADICALLY ENGINEERED SYSTEM

- Make it work at 5 to 10MWe
 - Economies of Scale working against us
- Make it work at village scale <2MWe
- Integrate with diesel infrastructure

USEFUL IN LOWER-48, TOO!

- Coal plants are best suited for baseload operation because it requires a long period to ramp up and to ramp down
- Syngas/Engine combinations has the potential for making coal a cost competitive resource meeting flexible energy demand and fluctuating generation

BUT MOST IMPORTANTLY ...POWER ALASKA'S INTERIOR

NEXT STEP: COMPETE FOR CONSTRUCTION FUNDING (DE-FE00031601)

C Randy Glasbergen / glasbergen.com

Phases:

- I. Team-Formation
 - M maximum award per team
 - -10 awards
 - **UAF** team already counts
- II. Prepare FEED & Environmental
 - \$3M maximum award per team
 - 4-5 awards anticipated
 - UAF's project has FEED already
- III. Detailed Design, Construction, and Commence Operation
 - \$80M maximum award per team
 - 2 awards
 - UAF's project needs to compete

"Does 'high-rise' refer to the building or the budget?"

RISK FACTORS

- Except for the HMI Gasifier, all components are available commercially
 - HMI gasifier components are well understood and documented
- Emission controls could be *the* key factor to be addressed
 - Fairbanks is in an EPA designated "Serious non-attainment area for PM 2.5"

MEET THE TEAM

- Diane Revay Madden, NETL
- Brent J Sheets, UAF
- Rolf Maurer & Team, HMI
- Harvey Goldstein & Team, WorleyParsons
- Chilkoot Ward, UAF
- Frances Isgrigg, UAF
- Russ Steiger, UAF
- Trish Winners, UAF
- Paul Morgan, GVEA
- Pete Saurer, GVEA
- Randy Hobbs, Hobbs Industries
- Alberto Pettinau, Sotacarbo

CALL ME SOMETIME

Brent J Sheets 907-750-0650

bjsheets2@alaska.edu

http://pdl.uaf.edu/