👯 Center for Applied Energy Research

Gasification Combined Heat and Power From Coal Fines

DE-FE0031520

Heather Nikolic and Kunlei Liu

University of Kentucky, Center for Applied Energy Research http://www.caer.uky.edu/powergen/home.shtml

Power Generation and Utility Fuels Group

Using Fossil Resources to Produce Clean Electricity

Post- Combustion CO ₂ Capture	Solvent Development	Chemical Looping	Water Treatment	Corrosion	Modular Coal Conversion & Gasification	
Process Integration and Scale-Up	Process Controls	Electro- chemistry	Membrane Separations	Analytical Methods Development	Combined Heat and Power	

- About 35 researchers (engineers, scientists, technicians and students)
- 10-18 peer reviewed publications, annually
- 5-7 invention disclosures, annually
- 5-10 project proposal submitted, annually

Outline

- 1. Project Background and Purpose
- 2. UKy-CAER Coal-based Polygeneraton Philosophy
- 3. Market and Economic Benefits
- 4. Alignment with Fossil Energy Objectives
- 5. Project Status
- 6. Technical Challenges, Next Steps and Outside Interest

Take Away

- 1. Small Scale Polygeneration is Applicable to Remote Areas like Appalachia, Economically and Environmentally
- 2. UKy-CAER Polygeneration Philosophy Supports the REMS Initiative through Standardization, Modularization, Fuel Flexibility and Simplification
- 3. Remote Polygeneration is of Interest to Local Governments and OEMs

Project Purpose

- Complete a FEED study for a 5 MWe equivalent polygenerating unit to be located at an industrial park in Hazard, Eastern KY utilizing nearby waste coal fines as the feed
- Identify appropriate main components (technology selection and operating conditions)
- Components included in FEED study

Project Goals

- Utilize local waste: refuse coal fines
- Develop a model for widespread application
- Develop cross-industry synergy in a rural, remote area
- Model for future economic development in depressed regions

Background

UKy-CAER Coal-based Polygeneration

Standardization + Modularization + Fuel Flexibility + Simplification = Distributed Power Success

Sulfur S Solid $+ CO_{2}$ @28 ppm **Fine Coal** First-stage **Syngas** Gasifier HRSG Turbine Recovery AGR Iron-bed S <u>S</u> @0.1 F-T Polisher **Configuration for** ppb **Small Modular Coal to** BOT Value-added Products

UKy-CAER Coal-based Polygeneration

Local heat and power generation with modular coal gasification and optional F-T synthesis Three useful products: power, heat and liquid hydrocarbons

Use a commercially available ASU ~2400 Nm³/hr O₂ consumption

- Design the burner based on O₂ available
 Outside chamber and burner sized fixed
- Size inside chamber tubes to accommodate different kinds of coal

- Design power generation unit based on čoal with lower heating value
- Excess syngas will go to F-T unit
- For power generation, meet EPA requirements, remove H_2S , minimal CO_2 and minimize AGR size
- Second stage H₂S removal bed before the F-T unit

Project Partnerships

Center for Applied Energy Research

TRIMERIC CORPORATION

Gay Brothers Lumber

Fourth Generation Lumber Company

Perry Harlan Leslie Breathitt Counties

Coal Fields Regional Industrial Authority

Market Benefits

Eastern, KY is a remote, coal dependent area.

Perry County, KY Coal Preparation Plants											
Company	Plant	Nearest Town	Capacity (tph)	Fine Coal Recovery Circuit							
Whitaker/Perry Co/ICG	#4 Plant	Hazard	750/950	HM Cyclone, Spirals							
KEM/Pads Branch	Plant #25	Hazard	400	HM Cyclone, Spirals							
Blue Diamond/	Leatherwood	Leatherwood	800/1600	Concentrating Tables, Spirals, HM							
Blackhawk	Leatherwood	Leatherwood	000/1000	Cyclones							
Lost Mountain	Harris Branch	Bulan	900	HM Cyclone							
Kodak	Chester	Allock	350	Hydrocyclone							
River Processing	Dunraven	Dunraven	350	Concentrating Tables, Hydrocyclone							
Sunfire	#2 Plant	Combs	175	None							
River Coal	Indian Head	Ned	180	None							
Tesora	Wahoo	Bonneyman	420	None							

2019 Gasification Systems Project Review Meeting

Economic Benefits

- Suffering from poor economy and job loss
 - Local polygeneration units will
 - Encourage industry location in industrial parks
 - Provide jobs
 - Provide secondary environmental benefit

of recovering coal fines and capping impoundments

• Use local sites in Perry County as representative of sites throughout Eastern, KY and Appalachia

Center for Applied Energy Research

Project Alignment to Fossil Energy Objectives

- 5 MWe energy conversion technology
- Will produce power, heat and liquid hydrocarbons at relatively small scale
- Economically compared to large scale state-of-the art technology
- Technology can be scaled up by modular expansion
- Modules to be pre-fabricated and deployed in remote areas, while maintaining advantages in cost and flexibility
- Supports Radically Engineered Modular Systems (REMS) Initiative

Technology to Market Path

- Establish future partnership with General Electric Power, who expressed interest in a microgrid demonstration
- Establish build, operate and transfer (BOT) relationship for the F-T part of this application

Impoundment Survey

	Moisture	VM	FC	Ash	С	Н	Ν	0	S	GCV
	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(wt%)	(Btu/lb)
Impoundment 1	2.07	14.5	14.36	69.06	22.44	2.16	0.31	5.47	0.56	1483
Impoundment 2	1.85	13.37	14.83	69.95	22.29	2.08	0.31	4.93	0.44	563
Impoundment 3	1.58	15.22	15.89	67.31	23.49	2.14	0.38	5.87	0.81	2294
Impoundment 4	1.86	16.7	16.66	64.79	25.45	2.27	0.35	6.63	0.52	1862

April 10, 2019

2019 Gasification Systems Project Review Meeting

Coal Recovery

Recoverable Coal

Target feed slurry of < 15% ash

69.4-

75.3

4.3-

4.6

1.3-

1.4

7.2-

10.0

0.8-

0.9

12,500-

13,000

56.9-

61.2

27.8-

29.8

11.0-

13.3

2019 Gasification Systems Project Review Meeting

Fuel for Proposed CHP

Coal-Water Slurry

Design Basis CWS	
Property	Value
Coal Concentration (wt%, Air Dried)	56
Dispersant Concentration (wt%)	0.5
Bulk Density (g/mL)	1.15
Apparent Viscosity (cP)	365
Flowability	А
Stability	A

Coal-Biomass-Water Slurry

Sawdust had to be dried, shredded and re-saturated with water Particles < 250 um were used 50.3 wt% (dry basis) Recovered Coal 0.6 wt% (dry basis) Sawdust 0.5 wt% Surfactant

Ash Analysis

Proposed CHP Gasification Unit Design Basis Design Basis Coal Feedstock AFTs					
Reducing Environment, Bulk Impoundment Material Ash Fusibility Temperatures					
Initial Deformation Temperature	2478				
Softening Temperature	2701				
Hemispherical Temperature	2716				
Flow Temperature	2737				

Options to tuning the ash flow T to ~2280 °F

- Blending with another type of coal
- Addition of ~2 wt% (dry basis) CaCO₃

Leachate Analysis

RCRA Regulated Elements in Feed Coal Ash, Feed Coal Ash Leachate and Gasification Slag Leachate								
RCRA Regulated Element	As	Se	Ag	Cd	Pb	Ba		
Solid Hazardous Material Limit by TCLP (ppm)	5	1	5	1	5	100		
Expected Pads Branch Recovered Coal Product Slag Leachate Concentrations (ppm)	0.001	0.017	7E-05	0.007	0.016	0.131		

Initial EH&S Assessment

The following Regulations need to be considered:

- 1. Clean Air Act (CAA) Potential Requirements
- 2. Clean Water Act (CWA) Potential Requirements
- 3. Comprehensive Environmental Responses, Compensation and Liability Act (CERCLA) Potential Requirements
- 4. Mine Safety and Health Act (MSHA) Requirements
- 5. Occupational Safety and Health Act (OSHA) Requirements
- 6. Resource, Conservation and Recovery Act (RCRA) Waste Management Potential Requirements
- 7. Surface Mine Control and Reclamation Act (SMCRA) Requirements
- 8. Toxic Substances Control Act (TSCA) Potential Requirements
- 9. National Environmental Policy Act (NEPA) Potential Requirements
- 10.Kentucky Public Service Commission (PSC) Transmission Siting Board Potential Requirements
- 11. Regional Transmission Organization (RTO) Potential Requirements
- 12. Federal Aviation Administration (FAA) Potential Requirements

Technology and Major Component Selection

Entrained Flow Gasifier

 Maximum fuel and operation flexibility

Aqueous amine (MDEA) to concentrate the acid gas stream followed by a solid scavenger (Schlumberger's Sulfa Treat Technology)

- Using just a solid sorbent at the gasifier outlet has a very high cost because the saturation point is low
- Merichem's LO-CAT[®] liquid redox technology may be a more economical process option, but increases process complexity and ExxonMobil's Flexsorb[™] may be a potential alternative to MDEA

ExxonMobil. Retrieved from https://www.exxonmobilchemical.com/sitecore/content/ExxonMobil%20Chemicals/Chemicals/Global/Website/library/Asset/2017/07/21/07/33/76C1A4D31BC746DABFA394F010E5B680. February 15, 2019. Schlumberger. Retrieved from http://www.vaportech. com/files/comm_id_13/products/sulfatreat_product_bulletin.pdf. February 15, 2019.

Technology and Major Component Selection

Once-Through at 60% F-T

- Recirculation is complicated
- Fe catalyst does not require WGS

Reciprocating Internal Combustion Engines for Power Generation

- GE Jenbacher engines
- Likely three engines required

Gas engine basic components

Gasifier, AGR, F-T FEED

Major Equipment and Power Consumption

Reactors, Heat Exchangers, Columns, Vessels, Tanks, Pumps, Agitators, Filters, Mixers, Separators and a Mill Medium, Operating Conditions, Design Conditions, Size, Weight, Material of Construction and Recommended Spares

HEAT EXCHANGERS														
	TAG			OPERATING (CONDITION	DESIGN CO	NDITION		SIZE	HEAT	HEAT		METAL	NEIGHT
NO.	NO.	NAME	MEDIUM	TEMPRATURE	PRESSURE	TEMPERATURE	PRESSURE	DIAMETER	LENGTH/HEIGHT	LOADING	TRANSFER	MATERIAL	WEIGHT	ALLOY
	NO.			(IN/OUT) ()	(MPaG)	()	(MPaG)	(mm)	(mm)	(KW)	AREA (m2)		(TOTAL)	WEIGHT
1	E-2201	Burner cooling water heat	Shell : CWS/CWR	25/35	1.5	60	2	450	Shell: 5370	134	38	CS	2000	
I	E-2201	exchanger	Tube : cooling water	45/35	0.4	80	0.7		Tube: 4500			304		700
r	E-2204	Lock hopper circulating	Shell : CWS/CWR	25/35	0.4	60	0.7	325	5220	360	10	CS	910	
Ζ	E-2204	water cooler	Tube : black water	150/70	3.52	200	4.5		Tube: 4500			304		210
3	E-2203	-2203 Raw Gas Cooler	Shell: Raw gas	182/40	2.8	310	3.5	650	7300	2770	96	CS	5130	
3	E-2203	Raw Gas Coolei	Tube : CWS/CWR	25/35	0.4	80	0.7		Tube: 4500			304		1820
4	E-2301	HP flash gas cooler	Shell : CWS/CWR	25/35	0.4	80	0.7	650	5660	3540	90	CS	4360	
4	E-2301	HP lidsi yas coolei	Tube: Flash gas	135/40	0.2	170	0.5		Tube: 4500			304		1640
,	E 2204	Maste water ecolor	Shell : CWS/CWR	25/35	0.4	80	0.7	400	5290	181.9	33	CS	1990	
6	E-2304	Waste water cooler	Tube : Waste water	61/40	0.5	80	0.7		Tube: 4500			304		680
7	E-2302	Vacuum Cooler	Shell : CWS/CWR	25/35	0.4	80	0.7	700	5700	2150	109	CS	5120	
/	E-2302	vacuum Cooler	Tube: Flash Gas	85/40	-0.05	120	-0.1/0.4		Tube: 4500			304		1980

	TOWERS													
				OPERATING (CONDITION	DESIGN CO	NDITION		SIZE			TOTAL N	/IETAL	
NO.	TAG NO.	NAME	MEDIUM	℃ TEMPERATURE ()	PRESSURE (MPaG)	℃ TEMPERATURE ()	PRESSURE (MPaG)	DIAMETER (mm)	T-T (mm)	CAPACITY (m3)	MATERIAL	WEIGHT(T OTAL)	alloy Weight	MATERI AL
1	T-2201	Water Scrubber	Raw gas / Black Water Raw Syngas	210	2.8	280	4	1200	4200	4.8	13MnNiMo R+316L(4m m)		1000	

BOP Systems

- PFD set complete
- Technologies selected for sulfur removal and power generation systems
- Steam system analysis complete

💺 Center for Applied Energy Research

Task Name	Start	Finish	1st Half 2nd Half 1st Half Qtr 4 Qtr 1 Qtr 2 Qtr 3 Qtr 4 Qtr 1 Qtr 2 Qtr 3	Project Su	uccess Criteria
1 Project Management and Planning	Wed 12/6/17	Wed 6/5/19		Date	Success Criteria
2 Project Design Basis	Wed 12/6/17	Tue 6/5/18			Acceptable feed slurry
2.1 Host Site Visit	Wed 12/6/17	Mon 3/5/18		6/5/18	
2.2 Coal Fines Impoundment Site(s) Visit	Wed 12/6/17	Mon 3/5/18			demonstrated for design basis.
2.3 Biomass Site Visit	Wed 12/6/17	Mon 3/5/18			Completed preliminary design
2.4 Project Management and Planning	Thu 1/18/18	Thu 4/19/18	→Immedia	6/30/19	nackage for polygoneration unit
2.5 Coal Feedstock Characterization	Thu 1/18/18	Thu 4/19/18	→Immunit	0/30/19	package for polygeneration unit
2.6 Biomass Feedstock Characterization	Thu 1/18/18	Thu 4/19/18			package for polygeneration unit to be located in Eastern KY.
2.7 Slurry Prep and Characterization	Tue 3/6/18	Tue 6/5/18			Demonstration that the
2.8 Fuel Mix Optimization	Tue 3/6/18	Tue 6/5/18		4/20/10	
2.9 Coal and Biomass Ashing and Leach Testin	(Tue 3/6/18	Tue 6/5/18		6/30/19	polygeneration unit can be
2.10 Milestone: Project Design Basis Complete		Tue 6/5/18	₹ 6/5		modularized.
3 Basic Engineering Design Elements	Thu 7/19/18	Wed 6/5/19			Demonstration of economically
	Thu 7/19/18	Tue 11/20/18			
3.1.1 Milestone: Polygeneration Process Basic Engineering Design Complete	Tue 11/20/18	Tue 11/20/18	◆ 11/20	9/30/19	viable option of CHP with small scale, locally installed
3.2 Technology Cost and Schedule Estimate	Wed 11/21/18	Wed 2/20/19	r i i i i i i i i i i i i i i i i i i i	///////////////////////////////////////	
3.2.1 Milestone: Polygeneration Process Cost Estimation Complete	Wed 2/20/19	Wed 2/20/19	◆ 2/20		polygeneration units throughout Eastern KY.
3.3 Initial Environmental, Health and Safety (EH&S) Assessment	Thu 7/19/18	Wed 2/20/19			
3.3.1 Milestone: Polygeneration Process EH&S Assessment Complete	Wed 2/20/19	Wed 2/20/19	◆ 2/20		
	Wed 3/6/19	Wed 6/5/19	¥1		
•	Wed 6/5/19	Wed 6/5/19	♦ 6/5		
3.5 Technology Execution and Management Guidelines and Procedures	Thu 7/19/18	Wed 6/5/19			
3.6 Logistical Summary	Thu 7/19/18	Wed 6/5/19			
3.7 Balance of Plant Requirements	Thu 7/19/18	Wed 6/5/19			

Results Apply to Strategic Goals

- 1. Supports Radically Engineered Modular Systems (REMS) Initiative
- Site Determination Template Economic, environmental and social assessments Proximity to and logistics of recovering waste coal fines Local energy demands
- Technology Selection Procedure for Niche Applications

 Gasification, acid gas cleanup, F-T synthesis, and combined heat and power (CHP) production
 - Address each niche application and the regional demands of Eastern KY
 - Small, modular equipment and processes for easier deployment
- 4. Deployment Method throughout Coal Communities
 - Environmentally sound
 - Supported by local governments
 - Motivates private business participation

Next Steps

- 1. Cost Estimation and Comparison
- 2. EH&S Assessment
- 3. Social and Economic Impact Assessment

Technical Challenges

- 1. Safe Method Removing Impoundment Material
- 2. Permitting Associated with Returning Solid Material to the Impoundment
- 3. Sulfur Recovery for a Usable Product
- 4. Maintaining the Feed Slurry Heating Value with Reasonable Flowability with Biomass Included

George Peterson. March 11, 2018. Fairbanks Daily News Miner. Retrieved from: http://www.newsminer.com/features/sundays/community_features/trove-of-photos-shines-light-on-life-at-gold-dredge/article_902cd2b4-2421-11e8-9716-170adebbc7c4.html April 2, 2019.

Outside Interest

Other Impoundment Locations

Hazard Perry County Economic Development Alliance

General Electric Power Owning the system, using GE turbine technology and selling heat and power

Sanju Material and Environmental Co. Build, operate and transfer (BOT) relationship for the F-T part of this application

Take Away

- 1. UKy-CAER has plan for distributed power success
- 2. At this scale, use of recovered impoundment coal is feasible for gasification and also offers a secondary environmental benefit
- 3. The project team is ready to continue the design and work with DOE toward demonstration in Eastern KY

Acknowledgements

U.S. DOE-NETL: David Lyons and Steve Markovich UKy-CAER: Jack Groppo and Moushumi Sarma BJST: Xiangkun Ren, Ting Cao, Edward Wu and Yankun Song Trimeric: Andrew Sexton, Brad Piggot, Austyn Vance and Anne Ryan SMG: Clay Whitney and Steward McCollam

Coal Fields Regional Industrial Authority, Blackhawk Mining, Arq and Gay Brothers Lumber

