

High Selectivity and Throughput Carbon Molecular Sieve Hollow Fiber Membrane-Based Modular Air Separation Unit for Producing High Purity O₂

FE-1049-18-FY19

Los Alamos National Laboratory

Rajinder P. Singh

2019 Annual Project Review Meeting for Crosscutting, Rare Earth Elements, Gasification and Transformative Power Generation Pittsburgh, PA

DOE – Fossil Energy/NETL

Outline

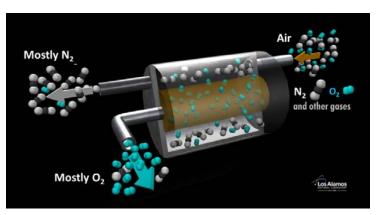
Serview Project Overview

Solution Membranes for Air Separation

Solution Statement State

Sequence Experiments and Results

✤ Next Steps


♥ Summary

Project Overview

Section Award Name:

- ♦ Award Number:
- **Solution** Series Serie
- Scherk Project Manager:
- **Solution** Solution S

High Selectivity and Throughput Carbon Molecular Sieve Hollow Fiber Membrane-Based Modular Air Separation Unit for Producing High Purity O_2 FE-1049-18-FY19 BP1: 12/2018 – 11/2019 Venkat K. Venkataraman Development of high flux polybenzimidazolederived carbon molecular sieve hollow fiber membranes having O_2/N_2 selectivity > 20 for high purity O₂ production to meet the needs of a modular 1-5 MWe gasification system

Team Members

Solution Materials Physics and Applications Division (MPA)

- Rajinder P. Singh
- Kathryn A. Berchtold
- John A. Matteson
- Jong Geun Seong

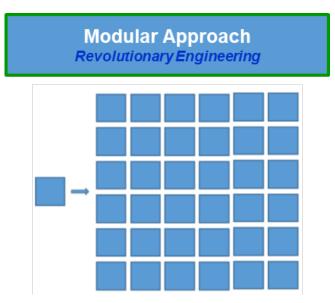
✤ Theoretical Division (T)

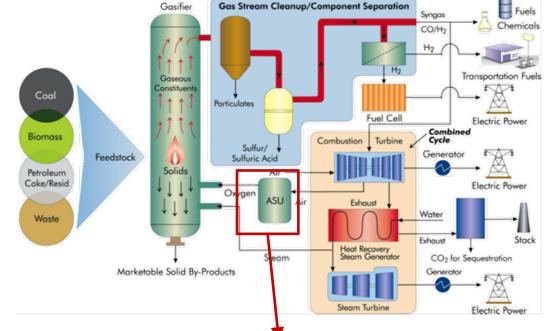
- Joel D. Kress
- Christopher S. Russell
- > Troy M. Holland
- > Alexander J. Josephson
- John M. Baca

Solution Section Section 4. Sec

> Todd A. Jankowski

Membrane Design, Synthesis & Characterization Evaluation and Parametric Studies

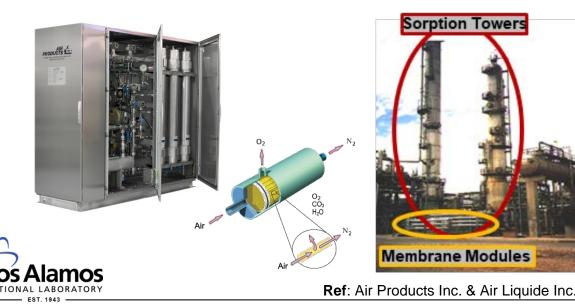

Process Modeling and Simulations

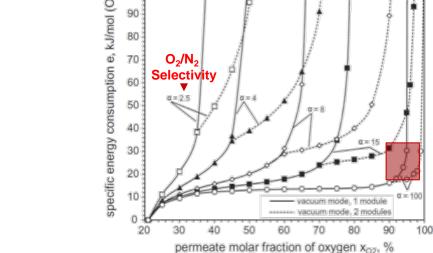

Modular Systems Design

DOE Advanced Energy Systems Program

& Gasification systems program

- Coal-based power generation with near-zero emissions
- Reduce the cost and increase efficiency exploiting Radically Engineered Modular Systems (REMS) concepts for gasification system
- Leverage mass production and learning curve in lieu of traditional scale-up


- ♦ Advanced technology need:
 - Energy efficient air separation technology for high purity O₂ production
 - > Program Targets:
 - □ 90-95 vol% purity O_2
 - Low cost and operational efficiency relative to the state-of-the-art technology

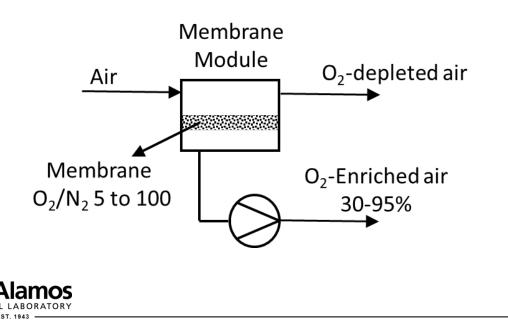

Images: DOE/NETL website

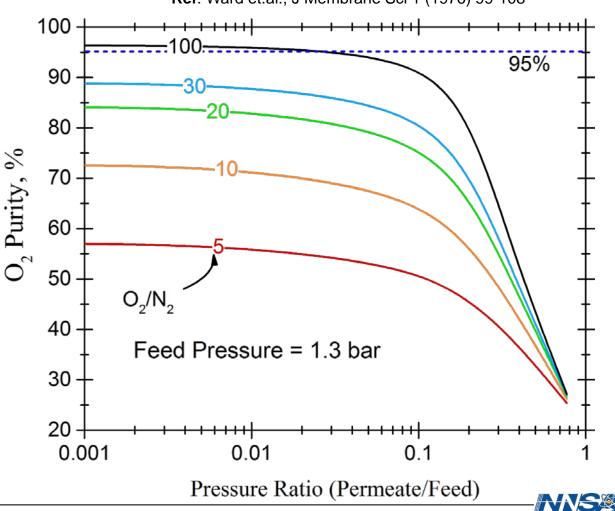
- MASX

Air Separations

- Cryogenic distillation is *the* industrially preferred technique for large-scale, high purity O₂ production
 - Cryogenic technology is energy inefficient at small scale
 - Scale dependent estimated specific energy consumption 23 to 63 KJ/mol
- Membrane-based air separation processes have advantages over competing technologies
 Inherent modularity & dramatically
 Tailorable output stream conditions (T&P) to match downstream process
 - Inherent modularity & dramatically reduced footprint

Improved energy economics

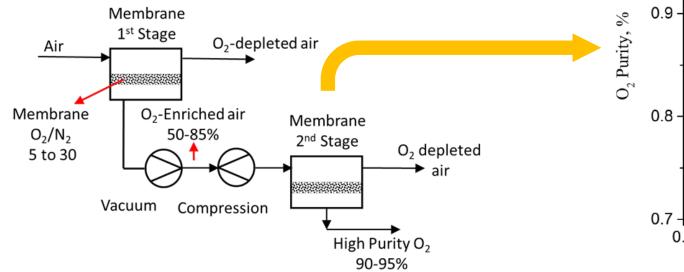

Ref: Meriläinen et al. / Applied Energy, 94 (2012) 285-294

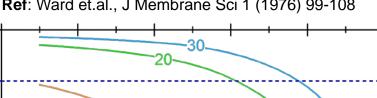


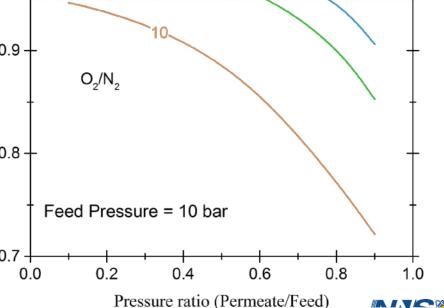
Membranes for Air Separations

- ♦ Membrane selectivity has a pronounced influence on the achievable O₂ purity
 - O₂/N₂ selectivity ~100 required to achieve > 95% O₂ purity in a single stage membrane calculated O₂ Purity. Ref: Ward et.al., J Membrane Sci 1 (1976) 99-108
 - Current commercial membranes have low O₂/N₂ selectivity (~5)

One-stage Membrane Separation Process


Achieving High O₂ Purity With Membranes

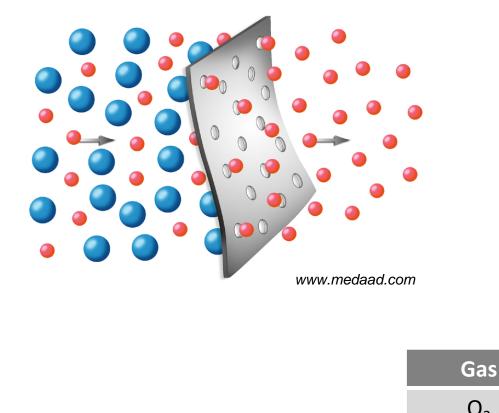

- ✤ A multi-stage membrane process is proposed to achieve high purity O₂ with realistically achievable membranes
 - O₂ enriched permeate from 1st membrane stage is further purified using additional membrane stages having an O₂/N₂ selectivity between 20 to 30
 - A 2-stage design enables high O₂ purity, but advantages of additional staging and alternative flow configurations are also be explored
 Calculated O₂ Purity two-stage operation. Ref: Ward et.al., J Membrane Sci 1 (1976) 99-108


1.0

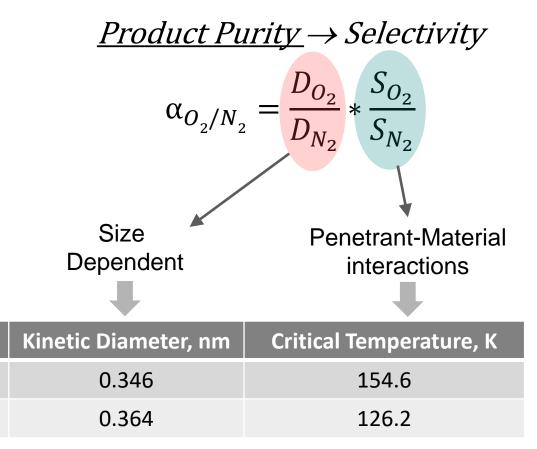
Inter-stage compression required for driving force

Multi-stage Membrane Separation Process to Achieve High Purity

Membrane Fundamentals

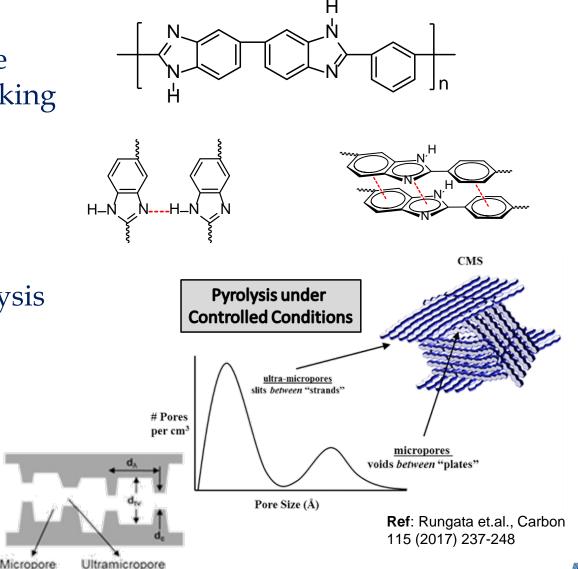

Solution Membrane performance is a function of a material's permeabity and selectivity

 O_2

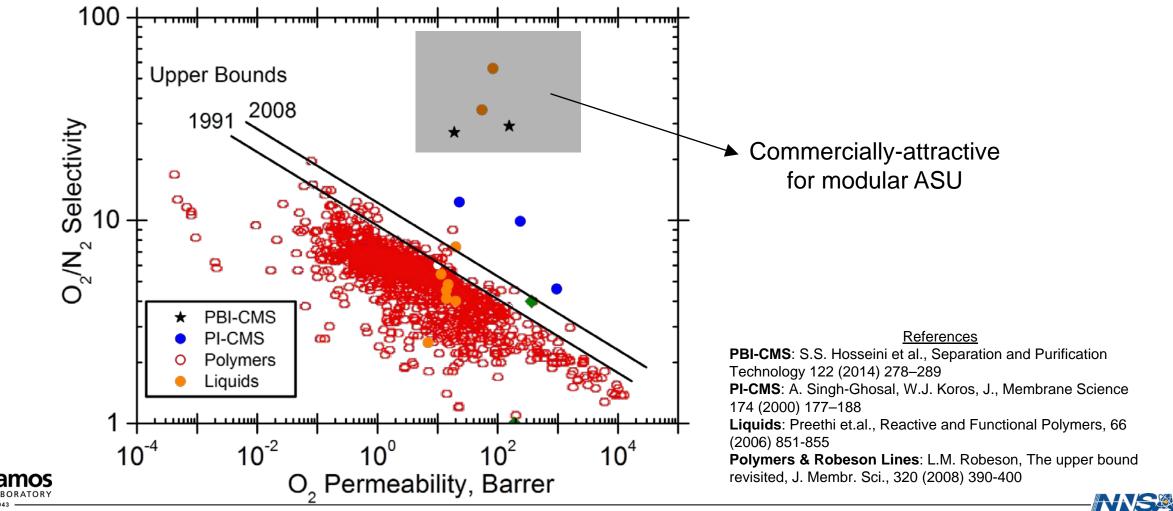

 N_2

Solution-diffusion transport mechanism

Molecular sieving membrane materials


<u>Productivity</u> → Permeability P = D * S

Membrane Development Approach


- Solution Polybenzimidazole (PBI)-derived carbon molecular sieve membranes for high O_2/N_2 selectivity
 - Tightly packed PBI molecular structure resulting from H-bonding and π-π stacking imparts molecular sieving character
 - Base polymer (*m*-PBI) has high selectivity for gas pairs (e.g. $H_2/N_2 \ge 100$; $O_2/N_2 = 2$)
 - Further enhancement of molecular sieving properties via controlled pyrolysis proposed to create ultra-micropores
 - PBI pyrolysis preliminary work: O₂/N₂ selectivity increased from 2 to 30 [Ref: S.S. Hosseini et al. / Separation and Purification Technology 122 (2014) 278-289]

O₂ Selective Membrane Materials

- **Solution** Solution State-of-the-art State-of-the-art
 - O₂/N₂ selectivities approaching 30 for polymer-derived carbon molecular sieve (CMS) membranes achieved

Project Objectives

- \clubsuit A membrane-based, modular air separation technology for high purity O_2 production
 - Develop CMS materials derived from PBI materials (PBI-CMS) to achieve the desired material transport characteristics (O₂ permeability of 100 Barrer and O₂/N₂ selectivity of 20 to 30)
 - Develop PBI-CMS hollow fiber membranes having the desired membrane performance characteristics
 (O₂ permeance of 100 GPU and O₂/N₂ selectivity of 20 to 30)
 - Conduct process design and analysis and techno-economic analysis based on PBI-CMS hollow fiber membranes for air separation and benchmark against the industry standard cryogenic technology
 - Design a modular ASU with integrated peripheral equipment (e.g., blower, vacuum pump, compressor) for high purity O₂ production scaled to meet the needs of a 1-5 MWe gasification system

1 Barrer = 1 GPU @ 1µm film

Membrane Material & Hollow Fiber Development

Pyrolysis Protocols Optimization

- Section Sec
- **Solution** Efforts targeting development and optimization of PBI pyrolysis protocols have been initiated with the goals of:
 - > Obtaining highly O_2 selective CMS materials (i.e., with O_2/N_2 selectivity)
 - > Understanding the influence of critical pyrolysis conditions on separation performance
 - Characterizing the impact of PBI macro-molecular characteristics on the resultant CMS membranes

Cast 10 to 50 µm PBI in inert atmosphere

Pyrolysis

Parameters

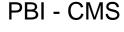
- □ Temperature (500 to 900 °C)
- Ramp rate and dwell time
- Environment (e.g. inert, reactive/templating (e.g. O₂, H₂, NH₃), vacuum).

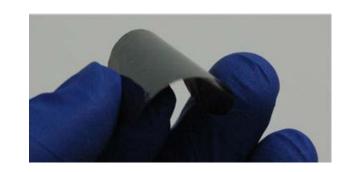
36" quartz tube furnace

Pyrolysis Protocols Optimization (cont.)

1st generation PBI-CMS thin films successfully fabricated

600 Neat PBI Ramp: 500 Dwell: 0.3°C/min $^{\circ}{\rm O}$ 1 hour Temperature, 400 300 200 Initial Ramp: 0.8 IV 1°C/min 100 0 00 06 12 18 00 Relative Time, hours


Pyrolysis Profile for 1st Generation PBI-CMS Films



Pyrolysis Protocols Optimization (cont.)

✤ 1st generation PBI-CMS thin films show promising gas separation characteristics

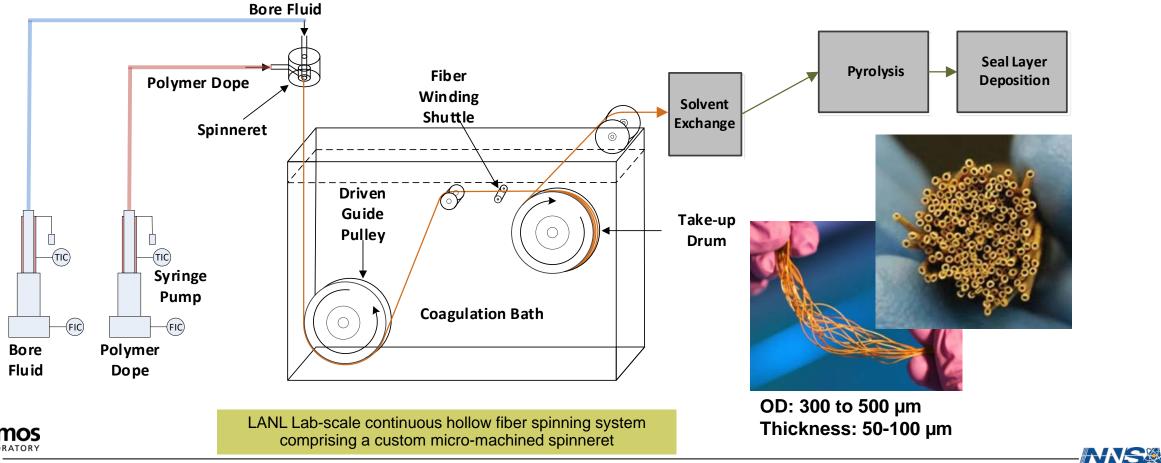
Preliminary pyrolysis conditions optimized to obtain mechanically robust PBI-CMS thin films for gas permeation evaluation

> Pure gas permeation properties indicate that PBI-CMS thin films are defect-free

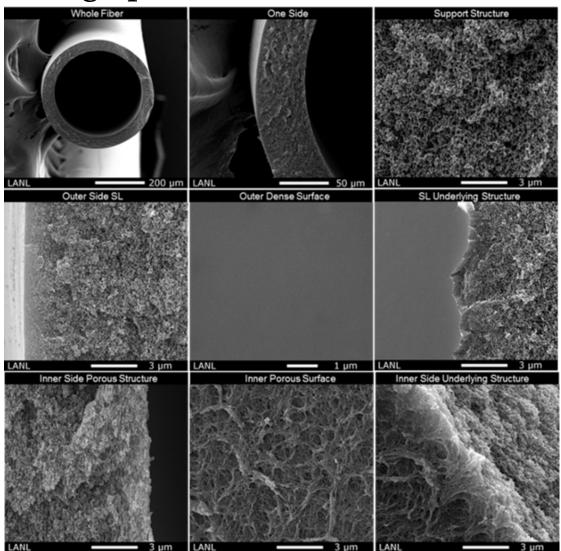
Gas Pair	Ideal Selectivity
He/N ₂	227
CO_2/N_2	58


*O₂ permeation evaluation will be initiated this quarter

PBI-CMS Hollow Fiber Membrane Development


- Economic considerations mandate the use of a high surface area to volume membrane deployment platform
 - Hollow fiber membrane platform enables high surface area density membrane deployment (2K to 20K+ m²/m³)
 - Large membrane surface areas are required to process the large gas volumes envisioned for this air separation challenge
- Section 2015 Se

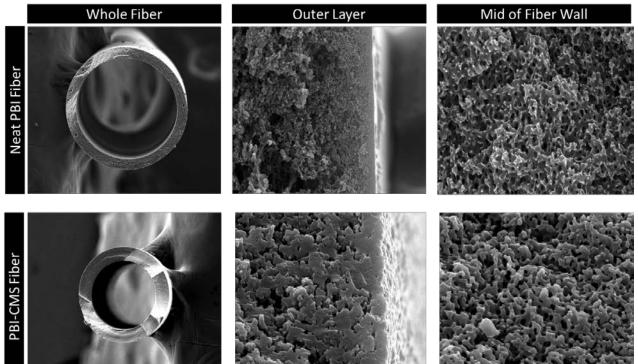
Hollow Fiber Membrane Platform


Base PBI hollow fiber membrane fabrication

- > Established PBI hollow fiber membranes fabrication capability is utilized
- Hollow fiber membranes having a variety of morphologies including the support layer porous structure and dense layer thickness are fabricated

High Performance Base PBI Fibers

- Version PBI spinning protocols developed to obtain high performance PBI hollow fiber membranes
 - Nearly defect-free dense layer production $(H_2/N_2 \text{ Selectivity} \ge 200)$
 - Selective layer thickness control (ca. 200 to 2000 nm) demonstrated
 - Macro-void free morphologies achieved
 - Porous support layer and inner surface produced
 - Industrially attractive fabrication process developed and demonstrated: flammable & toxic solvent use minimized/mitigated


High Performance CMS Membranes

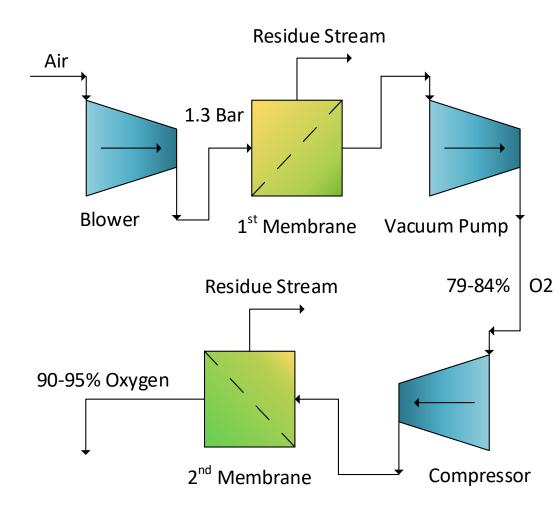
Solution States Selective Selecti

- Mitigating porous support structure collapse is critical to achieving high flux (productivity) membranes
- Promising preliminary results at LANL showing production of PBI-CMS fibers without porous support collapse
- Gas transport property characterization of PBI-CMS HFMs in progress

Membrane Modeling and Process Design

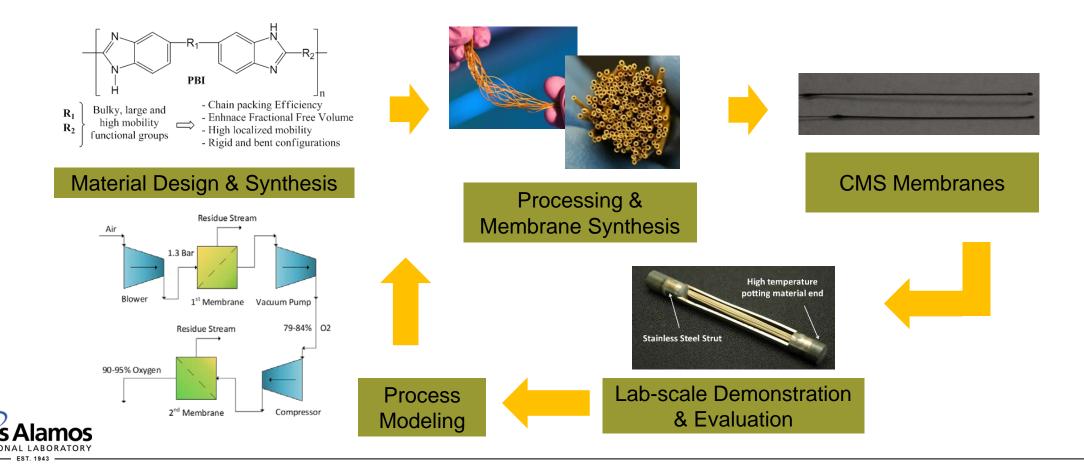
Process Design and Simulations

Solution Stage Develop a conceptual process design and perform process simulations for multistage membrane operation


Demonstrate energy and cost improvements as compared to the state-of-the-art industrial air separation method

Membrane Modeling	Process Modeling
 Develop a membrane model for multi-component feeds to evaluate membrane process parameter influences Calculate membrane area and separation efficiency as a function of process operating conditions and membrane properties 	 Develop an overall process model and perform preliminary techno-economic analysis Estimate energy required for multi- stage membrane process for high purity O₂ production from air and compare to that estimated for competing technologies
 Status: Coding completed in Python, model validation and testing in progress 	 Status: Membrane model integration with Aspen ongoing. Using CCSI² toolset for easy transition between Aspen and Python Scripts

Preliminary Process Design


- ♦ A preliminary 2-stage membrane process envisioned to provide high purity O₂
 - Vacuum on permeate side of 1st stage to provide driving force
 - Permeate from 1st stage is compressed to create driving force for the 2nd stage
 - Preliminary calculations indicate achievement of 98% O₂ purity for membranes in both stages having an O₂/N₂ selectivity of 20
 - Initial simulations indicate 17% O₂ recovery achieved at these conditions
 - Extensive model testing and validation will be conducted using known datasets

Summary

The outcome of this work will be a next generation membrane platform with processability and scalability characteristics amenable to industrial deployment at a modular scale while enabling low-cost and energy efficient high purity O_2 production for advanced gasification power systems

Thank you

Managed by Triad National Security, LLC for the U.S. Department of Energy's NNSA

