Existing Plants – Fleet Assessment

2019 Annual Project Review Meeting for Crosscutting, Rare Earth Elements, Gasification and Transformative Power Generation

Jeff Hoffmann, Systems Engineering & Analysis Directorate

April 9, 2019

- Coal Fleet Trends
- Diversity in Coal Plant Design and Operation
- Diversity in Electricity Markets
- Coal Plant Retirements
- Closing Thoughts

Recent Trends of the U.S. Coal Fleet

Credits: Left – EIA, Petroleum, natural gas, and coal still dominate U.S. energy consumption, https://www.eia.gov/todayinenergy/detail.php?id=36612 Top Right - NETL analysis of EIA data

Bottom Right -EIA, Almost all power plants that retired in the past decade were powered by fossil fuels, https://www.eia.gov/todayinenergy/detail.php?id=34452, 2018 and 2019 updated with current EIA Data (Preliminary Monthly Electric Generator Inventory, January 2019)

2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020

Changing Generation Mix

Alt Generation, Thousand MM alt Generation, Operable Utility-Scale Generating Units (as of January 2019)

Credits: Top Left – Adapted from OE Energy Market Snapshot, National – Data through October 2018, FERC Office of Enforcement, November 2018 Bottom Left – NETL analysis of monthly data as provided in EIA's Electricity Data Browser Right -EIA, <u>https://www.eia.gov/electricity/data/eia860M/</u> (Release Date March 26, 20'9)

Monthly Data Provide Greater Insight

Source: NETL analysis of monthly data as provided in EIA's Electricity Data Browser

Coal Relatively Stable Through 2008

Source: NETL analysis of monthly data as provided in EIA's Electricity Data Browser

Coal Decline Starts 2009 and Continues

Source: NETL analysis of monthly data as provided in EIA's Electricity Data Browser

Jan-19

Renewable Variability is Interesting

Source: NETL analysis of monthly data as provided in EIA's Electricity Data Browser

Utilization Trends of the Existing Fleet

Power Plant Operating Profiles

Impact of unit operating load on heat rate

Average EFOF vs. Age for coal-power plants designed for baseload operating in a cycling regime

Credits: Left – Analysis of unit-level hourly output Top Right – Adapted from IEA Coal Industry Advisory Board, Power Generation from Coal, 2010 Bottom Right – Adapted from European Technology Development Ltd, Impacts of Cyclic Operation on Maintenance Programs

Observations on Coal Plant Performance and Design

Diversity Across the U.S. Coal Fleet

Credits: Bottom Left, NETL analysis of Ventyx Energy Velocity Suite Database information Center: Samaras, C., et.al., Characterizing the U.S. Industrial Base for Coal-Powered Electricity, RAND Corporation, 2011 Right Top and Bottom, DOE EIA

2016 Fleet Performance Characteristics

Segment		Sub-poj	Efficiency						
Unit Type	Coal Type	Size (MW)	Capacity (GW)	# Units	Generation (BkWh)	Average Age	Std. Dev Age	Average	90 th Percentile
Low Pressure	Bit		1.9	41	2.9	41	13	27.7%	32.0%
Subcritical	Sub	0-200	3.4	55	10.4	49	14	27.4%	31.0%
(1,600 psig and less)	Other		0.64	11	0.97	40	17	25.0%	27.6%
	Bit	0-199	8.2	49	23.0	56	8	30.7%	33.5%
High Pressure Subcritical (1,800-2,600 psig)		200-499	30.4	93	108.0	42	13	31.6%	34.7%
		500+	29.8	48	127.6	37	7	33.0%	35.2%
	Sub	0-199	4.4	29	13.0	54	8	30.3%	32.1%
		200-499	27.3	83	113.9	43	13	31.5%	34.0%
		500+	66.6	100	309.8	36	7	32.0%	34.6%
	Other	All	8.86	18	52.70	31	12	31.6%	34.6%
Supercritical (Over 3334 psig)	Bit		62.1	78	285.8	41	11	34.7%	37.3%
	Sub	All	17.2	23	74.1	35	16	34.5%	36.9%
	Other		7.88	11	41.49	34	14	31.5%	32.9%
Fleet		NA	269	639	1164	42	13	31.4%	35.2%

13

Technologies to Improve Performance

- Many plant areas have room for improvement
- Solutions are commercially offered
- Key factors limiting implementation:
 - High cost
 - Inadequate performance improvement

Sample List of Improvement Opportunities

Upgrade Options			Upgrade Options			
	Redesign/replace economizer		Turaturat	Cooling tower upgrades		
Boiler Island Turbine Island	Boiler tube coatings	water	Treatment	FGD waste water treatment		
	Fuel delivery upgrades	Instrumentation & Control		Digital controls		
	Sootblower upgrades			Neural network		
	Air heater upgrades/lower outlet temp.			Pre-beneficiation		
	Condenser upgrades			Reduce moisture		
	Ash handling upgrades	Coal C	Choices	Reduce ash		
	Upgrade (e.g., blades, seals, materials, coatings)					
	Boiler feed pump upgrades			Change fuel		
	Generator upgrades			Waste heat utilization		
Flue Gas System	Fan and pump upgrades		pportunities	Sell low-pressure steam		
	Emissions control modifications			Incorporate thermal energy storage		

- For any given unit, only a subset will be technically feasible, of which only a few may be economically feasible
- The implication is that there is no practical one-size-fits-all solution

Bottom NETL modification of Google Earth image

Credits: Top: Salt River Project

Performance Improvement Opportunity

- Navajo Generating Station
 - 3 x ~800 MWe (Nameplate)
 - 1970's vintage bituminous-fired supercritical units
 - Env. Control Hot-side ESP (PM), Wet FGD (SO₂) and ACI (Hg)
 - Supplies the WECC Desert Southwest market
 - Online years 1974-1976, scheduled retirement in 2019
- Primary drivers for retirement
 - Changing economic circumstances (low NG prices, low demand)
 - Required future retrofit of SCR on Units 2 &3 to comply with Regional Haze regulations
 - Other site-specific drivers (site lease, closure requirements)

Case Study – Navajo Generating Station

Source - EIA Form 923

o0:0 ye

Gross Load, MW

NGS Unit 2 6/1/2016 - 5/31/2017

	Plant L	evel (all Ne	Unit Level CF, %			
	Output, MWh	HR <i>,</i> BTU/kWh	CF, %	U1	U2	U3
2011	16,951,775	10,060	80.2	69.0	84.4	87.4
2012	15,888,068	10,042	75.3	75.2	75.7	74.8
2013	17,131,763	10,135	81.2	82.8	75.0	85.3
2014	17,297,076	10,263	82.0	<i>79.5</i>	85.7	80.6
2015	13,572,760	10,392	64.3	71.6	65.6	55.6
2016	12,058,583	10,417	57.1	59.3	54.6	57.4
2017	13,781,218	10,349	65.3	61.2	68.3	66.3
2018	13,017,437	10,545	61.7	61.0	61.9	62.0

NGS Unit 3 6/1/2016 - 5/31/2017

Approximate 40% of MCR

- Already showing negative effects
 - Decreasing EAF
 - Increasing EFOR

Hourly load data source - https://ampd.epa.gov/amp

Case Study - Navajo Generating Station

• Study Objective

- Identify and evaluate potentially feasible heat rate improvement (HRI) opportunities
- Consider only commercially-available, state-of-the-art technologies
- Focus on technical assessment including magnitude of potential HRI and order of magnitude implementation costs

• Study Findings

- Twenty three individual HRI opportunities identified and evaluated
 - Individual improvements ranging from very small to $\sim 1.4\%$
 - Individual implementation costs from negligible to ~\$18M/unit (~\$24/kW)
 - Individual cost efficiencies ranging from "free" to >\$150k per Btu/kWh improvement to unit heat rate
- Maximum "feasible" HRI ~4.7% at cumulative implementation cost ~\$40M/unit (~\$55/kW)

• NGS Operator (Salt River Project) Perspective

- Has "considered many of the options" identified by Black & Veatch
- Acted on or dismissed options based on "operating and economic factors"

NGS Heat Rate Improvement Options at Four Cost Efficiency Thresholds

Credits: NETL Plant Efficiency Evaluation at Navaio Generating Station DOE/NETL-2018/1891

Observations on U.S. Electricity Markets

Diversity Across U.S. Electricity Markets

	2016		ty Compo	osition				
	Nameplate Capacity, MW	Coal	Gas	Int ¹	Market Characteristics			
CAISO	82,379	0%	53%	23%	Access to electricity markets across eight western states; CO ₂ constraints			
MISO	184,427	38%	43%	11%	Access to shale gas and wind; a number of state utilities continue to be vertically integrated monopolies; seasonal (i.e., winter) challenges for flexibility and reliability, capacity market and ancillary service opportunities; power import/export with Canada			
ISO-NE	31,798	3%	52%	8%	Increasing NG capacity; NG infrastructure challenge; power import/export with Canada			
NYISO	41,646	3%	53%	5%	Declining electricity demand and aging infrastructure; increasing NG and wind with coal & oil declining; hydro & nuclear (mostly) constant; changing demand profile due to efforts focused on energy efficiency and other behind-the-meter opportunities; power import/export with Canada			
Northwest	81,494	15%	25%	16%	Heavy reliance on hydro; legacy state-regulated, vertically integrated, monopoly markets; significant Federal presence (Bonneville Power); power import/export with Canada			
PJM	200,440	32%	38%	6%	Declining electricity demand and aging infrastructure; changing demand profile due to efforts focused on energy efficiency; large legacy generation disproportionate in some states; capacity market and ancillary service opportunity			
Southeast	232,614	28%	49%	3%	Legacy state-regulated, vertically integrated, monopoly markets			
Southwest	59,070	29%	47%	17%	Legacy state-regulated, vertically integrated, monopoly markets			
SPP	87,255	30%	39%	12%	Increasing NG capacity, wind generation, ancillary service opportunity			
ERCOT	107,569	17%	59%	22%	Excess capacity, increasing wind growth			
Total	1,108,691	25%	45%	12%				

1. % Intermittent includes wind and solar; does not include geothermal, landfill gas, MSW, black liquor, biomass or hydro

Credits: Ventyx Energy Velocity Suite Database (data); EIA, FERC (graphics)

Market Variability – Capacity Mix

Credits: Adapted from OE Energy Market Snapshot, National – Data through October 2018, FERC Office of Enforcement, November 2018 Wind & Solar split based on FERC-cited data source (EIA Form 860M, June 2016)

Market Variability – Priced Components

Interconnections

Circles represent the 66

balancing authorities

Eastern

ERCOT

Western

Bulk Power Grid of the Continental United States

soco

Comparison of Market Components Across Competitive Electricity Markets (as of 2015-2016)

A/RT	DA/RT	DA/RT	DA/RT	DA/RT	DA/RT	
					DA/KI	DA/RT
RT	DA/RT	RT	DA/RT	DA/RT	DA	DA/RT
P/RT	DA/RT	DA/RT	DA/RT	DA/RT	RT	DA/RT
Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²	Yes ²
Yes ²	Yes ²	Yes ²	Yes ²	No	Yes ²	Yes ²
FTR	TCC	FTR	FTR	TCR	CRR	CRR
14	Yes	Yes	Yes	No	No	Yes
Y	′es² ′es²	Yes ² Yes ² Yes ² Yes ² TR TCC	Yes2Yes2Yes2Yes2Yes2Yes2YES2Yes2Yes2TRTCCFTR	Yes2Yes2Yes2Yes2Yes2Yes2Yes2Yes2YES2Yes2Yes2Yes2TRTCCFTRFTR	Yes2Yes2Yes2Yes2Yes2Yes2Yes2Yes2Yes2NoTRTCCFTRFTRTCR	Yes2Yes2Yes2Yes2Yes2Yes2Yes2Yes2Yes2Yes2NoYes2YES2Yes2Yes2Yes2NoYes2TRTCCFTRFTRTCRCRR

Notes:

1. Reserves include one or more of the following services: Spinning, Non-Spinning, 30-minute, Supplemental

2. Voltage support and black start ancillary services are compensated through cost-based mechanisms and are not a "competed" component of the market structure.

Table Abbreviations:

- DA Day Ahead
- RT Real Time
- FP Forward Planning (pre-DA)
- FTR Financial Transmission Rights

TCC – Transmission Congestion Contracts TCR – Transmission Congestion Rights CRR – Congestion Revenue Rights

eia

O

Market Variability – Power Pricing

2018 Spot Power Prices (\$/MWh) Mid-Mass Hub Columbia Indiana \$34 \$48 Hub 32% \$38 38.9% 8.5% €} PJM West **NP 15** SPP **NYISO ZJ** \$42 \$40 North 26.2% 4% \$46 \$29 Palo Verde 15.5% 23.2% \$40 18.1% Into ERCOT Southern North \$31 \$42 3% 56% **\$** = Average YTD 2018 monthly day-ahead on-peak price % = Percent increase from 2017 YTD

Source: RTO/ISO data and SNL Day-ahead Prices

Observations on Coal Plant Retirements

A Significant Decade for Coal Retirements

~66 GW of Retired Coal

Attributes of Retired and Operating Units

Coal Retirements According to Heat Rate and Environmental Controls

Coal Plant Status - Environmental Controls and Fuel Type

Credits: Left – Charles River Associates, The growing risks of regulated coal ownership, CRA Insights: Energy, April 2016 Right - – NETL analyses of EIA unit-level data

U.S. Coal Fleet Through 2030

U.S. DEPARTMENT OF

Source: NETL analysis

Why do coal plants retire?

• Revenue insufficient to cover cost of ownership

- "Routine" increased costs associated with aging and normal use of plant equipment
- "Non-routine" increased costs due to accelerated wear from non-baseload operations
- Decreased capacity utilization

• Factors that influence decision

- Competition with lower-cost alternatives (e.g., natural gas, renewables)
- Changing market conditions, largely unfavorable to coal (e.g., decreasing demand, market incentives for renewables, inadequate or non-existent compensation mechanisms)
- Increasing corporate/investor focus on "clean" energy options
- Public policies (e.g., renewable portfolio standards, state and federal regulations)
- Societal concerns (e.g., "customer choice" for renewables, active opposition resulting in protracted permitting efforts, uncertainty in future public policy)

Retirement Example (Retired in 2018)

- Sandow Power Plant
 - Unit 5 692 MWe Lignite-fired fluidized bed combustor
 - Full-load efficiency 35%
 - Full suite of environmental controls
 - Supplied the competitive wholesale ERCOT market
 - Online year 2010, retired in 2018
- Primary drivers for retirement
 - Low wholesale power prices due to oversupply of generation, largely due to:
 - Recent and continued addition of wind and solar generation
 - Sustained low natural gas prices

Retirement Example (Planned for 2025)

- Intermountain Generating Station
 - Units 1 & 2 1,775 MWe Bituminous-fired pulverized coal
 - Full-load efficiency 35.2% (Unit 1), 35.9% (Unit 2)
 - Full suite of environmental controls
 - Supplied multiple customers in Utah and California
 - Online year 1986 (Unit 1), 1987 (Unit 2), both scheduled for retirement in 2025
- Primary drivers for retirement
 - LADWP (plant operator and purchaser of 48.6% of generation) will not renew power purchase agreement, in part due to CA limitations on CO₂ emissions
 - New NGCC planned for site of existing coal units

29

Closing Thoughts

- Solutions relevant to the existing fleet are needed in the near-term
- Must bring meaningful improvements to targeted attribute (e.g., efficiency, flexibility, reliability)
- Must be low cost, rapid return on investment
- Must be low risk in all aspects
 - Performance must function as intended
 - Reliability must not negatively impact the existing plant
 - Cost must have high cost certainty, minimal "collateral costs" (i.e., costly investments in other parts of the plant for system integration, life extension, etc.)
 - Integration must be easily "absorbed" by existing plant infrastructure (including workforce)
 - Execution predictable implementation, acceptable impact to short- and long-term operations

R&D Focus	Benefit to Owner/Operator	Benefit to System and Society
Improved Efficiency	 Increased capacity utilization via higher unit dispatch lower cost of generation 	 Lower electricity cost to the consumer Decrease in environmental emissions from coal-fired electricity production
Increased Flexibility	 Greater agility to respond to rapid changes in electricity supply and demand 	 Improved system capability to handle increased penetration of VERs Lower system cost due to decreased need for replacement generation capacity
Enhanced Reliability	 Decreased maintenance costs Fewer and shorter unplanned outages 	 Improved energy security supported through higher system reliability Lower cost to consumer through decreased need to source higher cost replacement power when unplanned outages occur

Thank You

Jeff Hoffmann Jeffrey.Hoffmann@netl.doe.gov

Visit us at www.netl.doe.gov

