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1. Project Description and Objectives
NETL's MFiX —Multiphase Flow with Interphase eXchange

e Central to the laboratory’s multiphase flow reactor
modeling efforts

)\ Direct Numerical Simulation: Very fine scale, accurate simulations for
i very limited size domain

Discrete Element Method: Track individual particles

’MFix DEM and resolve collisions

MEFiX Hybrid Hybrid: Continuum and discrete solids coexist

* Provides support to achieve DOE’s goals
1. Cost of Energy and Carbon Dioxide (CO2)
Capture from Advanced Power Systems

2. Power Plant Efficiency Improvements
Two-Fluid Model: Gas and solids form an

E ®
5MFIX TFM interpenetrating continuum

e Built with varying levels of fidelity/computational

cost
. . . Particle-in-Cell : Track parcels of
= Lower fidelity models for large scale reactor WAFEX pic 4 tices and approsimate colisions
design
" High ﬁde“ty mOdeIS to support the M)A\ Reduced Order Models: Simplifie

N\ ht models with limited application

certainty 2
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development of lower fidelity models




1. Project Description and Objectives

Status of the beginning of the project
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Results from : “Fluidized Beds — recent applications”,
W. Rogers, 215 IWTU Fluidization Workshop
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High-end validation study:

* Fine grid with 1.3M cells

e Two solid phases (coal and recycled ash)

e Detailed gasification chemical kinetic (17 gas
species, 4 solid species)

What was missing the in the model?
No real radiative heat transfer modeling
available in MFiX!
Driving Question/Motivation

Enhance MFiX capabilities by including
models for radiative heat transfer
following MFiX’s multi-fidelity approach

.
o I
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1. Project Description and Objectives

Technology benchmarking: comparing three popular CFD packages

Capability OpenFOAM (open source) | ANSYS-FLUENT
(commercial)

TFM reacting

DEM reacting yes no no
Radiative Heat transfer no Gray, P1, DOM Gray, simple WSGG, P1,
DOM

— . . T
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1. Project Description and Objectives
MFIX-RAD development plan

“Research Models”

PMC + Line-by-line model (full spectral resolution ~10 million :
lines) -> model error free :
|
|

PMC + Weighted Sum of Gray Gases (WSGG) model

Usable in MFIX-TFM and

-
MFIX-DEM! - | P1+ Gray gas & particle model
(neglect all spectral variations)

|

|

l P1 + gray constant (neglect all
: spectral and spatial variations)
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2. Project Update

We have received a 1 year, no cost extension

T e e T vers L vt

04/ 07/ 10/ 01/ 04/ 07/

19

Tasks 10/ o1/ o4/ 07/ 10/ 01/ 04/ 07/ 10/
17 1 1 1 1 19 19 19

T-1: Project

Management and |

Planning Done °

T-2: Testing of the
previously developed
MFIX-RAD Radiation
Model Plug-In

T-3: Implementing basic
radiation model within
MFIX-DEM

T-4: Implementation and
Verification of Industrial
Models

®

T-5: Industrial Model
Application and Analysis

Ongoing

T-6: Development of
High-End Research
Models

Early stage work (MS

T-7: Comprehensive
Validation and
Benchmark

student)

01/
20

20

20 20 21 21 21
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2. Project Update
Modeling approach
Energy equations for MFiX-TFM

oT, -
Gas €gPgClpg (a_f tUg -ATg) — VQg + Z%=1 Hgsm o AHrg + Hwall(Twall o Tg) - V. Arg
0Ts,, M =
Solids €5, Ps, Cosn, (7 + U -ATsm) = VCIsm + Yim=1 Hgsm - AHrsm - V. Arsm
Single particle Energy equation for MFiX-DEM

aT,

i

MiCpi g = z qi,j t 9if t Qirada + qiwau
n=1

Source/Sink Terms are obtained from the thermal radiation model!
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2. Project Update

I, |
’\ [\/—) Emission E =S Vln = anlbn
I l\j" ?" Absorption - an In
/\/') . Outbound Scattering O-ST’f >/ — >y
—0, L, +— | [.,(s)P,(s,s )d)
y& N. /\/-) Inbound Scattering Sn n 47-[ n( ) Tl( )

The RTE is an integro-differental equation for the
spectral intensity I,,(x, y, z, ¢, ¥, 1)
Srag =V Grgg = J a, (47”1917 _J Indﬂ) dn (a function of 6 variables!)
41T
0

Source term in the energy equation:

G,, spectral incident radiation
Solution approach: n 3P

3 spatial dimensions 7(x, y, z):CFD discretization
2 directional dimensions s(¢, ): RTE solvers
e 1 spectral dimension (n): spectral models
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2. Project Update d,

- O-Snj - — >
— =5V, = aply, — aply, — osply +— | 1,(5")P,(5,5)dQ
. n n'bn n'n Sn'n n n\-
Gray P1 model assumptions ds 4m

1) Gray participating medium (gas and solids) -> no dependence on wavenumber 7

2) Use a “Fourier series” ansatz I(7,5) = X2y 25, [;(#) - V,(s) «——— Spherical harmonics

/

Spatially varying coefficients

3) Keeping only the first term [ = 0 leads to the P1 approximation

4) Solve a “combined” (including all phases) P1 equation for G (Helmholtz type)

Gas phase absorption 1

oT* r

V.(I‘VG)+47t<ag —+E>—(ag+aS)G=O

I8
i ™~ Solid phase absorption
Gas phase emission

B 3(ag +as + O'S) — Cog

Solid phases emission
T : B
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2. Project Update

oY H H ” o T4
Distributing the source terms V.'VG)+4m (ag

- +ES>—(ag+aS)G=O

Gray models for a

g
Continuous phase —V. Qrg — Ay G — 4090' T}‘, * ‘“gray constant” a; = const (user input)
e “gray” => Planck mean absorption using C0O, and
H,0
M M M 4
: o Tsm
Dispersed phase m (M total) a, = Asm E, = Z E,,, = Z Ay —
m=1 m=1 m=1 n
M M 4 M M
_ 0 Ism _ 4 _
-V Qrs = Asm G —4m Asm T - (as,mG - 4‘as,mo- Ts,m) - -V Qrsm
m=1 m=1 m=1 m=1

Gray models for
-V i (G—4'O'T4 ) “ ” .. )
9Qrsm s,m e “gray constant” based on constant emissivity and diameter of
particles

e “gray” based on Buckius-Hwang correlation (depends on refractive
index, mean particle size, void fraction and temperature)



2. PrOjECt Update Incident radiation G [W /m?] fields

Basic Verification of the P1 implementation

15 .
L flsm e 2D Steady, single phase
* Heat transfer via radiation (P1, a, = 0.01m™1) and
diffusion
* Mesh: 30x200
o «~ * Use Ansys-Fluent solver for verification
8 3
LN (o0}
] 1
- -
800 400 Fg—— —
| FLUENT . T LN FLUENT o
£ Initial - MAX Hg“ 1 300 Ei'. MFiX o ;
— condition o u S0 F " . ] 53530
: 650K < 700 | " 1 : e, 3 [53520
g ¢ v ‘100 8, ]
% HH :g_, BE
g ig 8 Oi_ aﬁa ] — 53500:
8 = - :
,ﬂ_EJsoo— ..' 4 8 -w0f B E
ot ﬁ 00 F e ] 53480
[ L _ z ] ;
[ . ] 300 | "
500 = I E N E R S S ¥ ] 53460
v 0.00 0.03 0.06 0.09 0.12 0.15 -400 e [
Length (m) 0.00 0.03 0.06 0.09 0.12 0.15
Length (m) 53440

FLUENT MFIiX



Source term — gas

2. Project Update
Verification of the P1 - DEM implementation
ormel 2D, Radiation only (frozen “fields”), 30x90 cells

ET e Compare TFM and DEM results => should be identical
S * Gas phase a; = 0.3cm™" y=0.61m | ___
% * one particle per cell (d, = 1mm, emg; = 0.6 =>a; =
£ 0.6cm™1
I
T‘}._? ! y=0.11m y=0.61m
E 0.8\IIIIIII||III\\IIIIIII T UL AL L R L R B
1 i TFM —a— 1 | TFM —a— 05
S i DEM —o— {1 DEM —e— 04
m 0.4
-..E._, L
£ 3 0.0 - - | .,
S = : 11 { ¥y=0.11m
15 & -0.4F 1 F : mk ,[_UT
0.8:‘"""""""""""'_ e b e ] -05
o 3 6 9 12 150 3 6 9 12 15 MFiX - TFM MFiX - DEM

Length (m x 1072) Length (m x 1072)



2. Project Update .

T

Relevance of thermal radiation in Lab-Scale reactors (54kWth)
* Two Fluid Model

e 2 solid phases (cold and hot char) Compare results with and 5

* 5gasphases (N3, 02, €0, C0y, so0t) without radiative heat transfer! <

* Neglect convective heat transfer =2
e Geometry e

e 2D Cylindrical S

e 20x60 cells T 3

MFIX-RAD settings in mfix.dat Gas & solid phase reactions é

# Radiation Model 2*CO --> Soot + CO2 =

RAD ON =T. 2*CO --> Soot + CO2

RAD_EMIS W =1.01.01.01.0 CO +0.5*02 --> CO2

RAD_T_W = 300 300 800 800 2*FC1 + 02 --> 2*CO

RAD_NQUAD =1 FC1 + CO2 --> 2*CO

RAD_SKIP =0 2*FC2 + 02 --> 2*CO v

RAD_NRR =10 FC2 + CO2 --> 2*CO '

RAD_RTE ='P1' FC2 --> FC1 Air 300K, 4g/s Air 300K,

RAD_SPECTRAL = 'GRAY' Ash2 —-> Ash1 Char300K18g/s 17 gg/s

+d [ L = - - 3
. I-‘
o y
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2. Project Update

Gas Temperature [K] Gas volume fraction

Time: 10.005 Time: 10.005 Tirme: 10.005 Time: 10.005
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AT > 110°C

Even in low-Temp
Lab scale reactor!



2. Project Update

Relevance of thermal radiation in a Large Scale reactor (5.4 MWth)

e Same case as before but thermal power Tg [K] at t=16s
scaled up by a factor of 100

* |nclude convective heat transfer to I

1.0e+03

walls using average heat transfer
coefficient h = 14 W /m?K
e Mesh 40 x 120 cells

Mass weighted average temperature at the outlet

—No radiation l 8.0e+02

1200

K
H
-
o
S

H
o
o
o

900

Gas temperature [K]

700

— 950
I 900 ‘
'_

— 850

heat transfer!

—P1

Even with convective

(AT > 100°C

800t

13 14 15 16

t[s]

17

18 19
No rad P1 gray

H=12m

___________

Twa” = 800K

'
|

Air 300K, 0.1kg/s
Char 0.18kg/s

Air 300K, 1.16kg/s




2. Project Update
MFiX-DEM with radiation

pressure outflow
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Only heat transfer (no chemical

reactions)

2D Cartesian
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Particle diameters 4mm, 2mm
Particle emissivity €, = 0.6
Constant gas phase absorption
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3. Preparing Project for Next Steps

 Market Benefits/Assessment
 MFiX is widely used the CFD tool for modeling/optimization of reacting multiphase flow
e MFiX currently has no radiative heat transfer modeling capability

* For a simple spouted bed combustor, neglecting radiative heat transfer results in temperature
differences of 100°C

 Technology-to-Market Path

e Basic MFiX-RAD Plug-In is available at GitLab => every MFiX user can download and use it their process
modeling!

e A more accurate spectral model based on WSGG is currently implemented and will be available by the
end of May 2019

* Detailed experimental data for validation is rare in Fluidized Bed Combustors/Gasifiers at larger scale

 We will use a LBL Photon — Monte Carlo method (model error free) to validate the lower fidelity
gray and WSGG models to provide uncertainty values

 We are seeking industry collaborators who want to use MFiX-RAD in their applications



4. Concluding Remarks

Basic radiation model (Gray, P1) has been implemented and verified for MFiX-TFM
and MFiX-DEM

First results in low-temperature spouted bed confirm that radiative heat transfer is
iImportant

Next Steps

Extend basic radiation model to be usable in the new and improved MFIX-PIC
(v19.1)

Finish implementation and verification of industrial model (WSGG, P1)

Implement Photon Monte Carlo solver for detailed validation of lower fidelity
models

* David Tobin (MS student) has started this task and it will be his thesis topic
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4. Concluding Remarks

 We have received the detailed (1.4 M cells) MFiX case set up for the
13MW Power Systems Development Facility (PSDF) gasifier =>
temperature and syngas composition data available at the outlet

 We will use this case for validation of the models in a large-scale
application

* Expectimprovements compared to simulations that neglected
radiative heat transfer

/

IETFTITT e @
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