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Two-Fluid Model 
(TFM)

Background: Numerical Methods for Studying Gas-solid Flows
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Fullmer and Hrenya
(Ann. Rev. Fluid Mech., 2017)

Less CPU time

More detail, fewer closures
DEM: 

a balance between computational 
overhead and sources of uncertainty

It is already 
value added

39%

In the next 
five years

44%

In the next ten 
years
11%

In the next 
twenty 
years
6%

Expected value added through DEM

PSRI Industrial Survey 
(Cocco et al., Chem. Eng. Prog., 2017)

Tenneti & 
Subramaniam (2016)

In-house

DNS

CFD-DEM

In-house



Motivation: Big picture
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CFD-DEM Laboratory
Np ~ 105 - 107 Np ~ 109 - 1010 Np ~ 1014

Industry

Goal: DEM application toward industrially relevant flows

Challenges
• Speed ⇒ Optimization & Algorithms (this talk)
• Results reliability ⇒ Validation & Uncertainty Quantification (this talk)
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Recent Accomplishment:  1-billion particle case
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after ~1/2 rotation

Rotating square tumbler
• Gaussian PSD (250-750 μm)
• Domain: 0.72m x 0.72m x 0.72 m
• Simulation time: 1 sec (1 full rotation)

1-million particle case 
shown here for easier
visualiation



Background

Computer models are often deterministic
• One set of inputs  one set of outputs

Most real-world problems include input uncertainty
• Measurement precision
• Natural variability (e.g., particle size distribution)

State-of-the-art Uncertainty Quantification (Full UQ) 
• Direct sampling over the entire phase-space of uncertain inputs
• Establishes range and likelihood of possible outcomes 
• Often exceedingly expensive (thousands of simulations; many more than validation)

Need to reduce computational expense to apply UQ to CFD-DEM 
• Reduced UQ

- Identify and propagate uncertainties for key input parameters only



CFD-DEM Small-Scale Experiments: Prior Work

(Yuu et al., Powder Tech., 2000)

Common system
• Small rectangular FB
• Group D particles
• Np ~ 105

Metrics to compare
• Flow patterns
• Pressure drop
• Velocity profiles

Objective
• Code Validation

NETL Small-Scale Challenge (SSCP) Problem I
(Gopalan et al., Powder Tech., 2016)
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Semi-circular bed with Horizontal Jets
(Fullmer, LaMarche, Issangya, Liu, Cocco & Hrenya , AIChE J., 2018)



Motivation and Objective:  UQ effort

Full UQ

Epistemic Uncertainty – Unknown 
• sample N3+2 epistemic uncertainties

Aleatoric Uncertainty – Measured 
• 100 samples/epistemic sample

To date, full UQ of CFD-DEM prohibitive
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Current Objectives
1. Design experiment in which Full and Reduced UQ can be performed
2. Directly test Full UQ vs. Reduced UQ using                     DEM

• 60,000 particles
• 192 cpu hrs/simulation
• 5 epistemic uncertainties 
 12,700 Simulations



Experimental Design

Target: Very-very small scale challenge problem
(VVSSCP) with simulation times < 8 hours 
on a single CPU

Important Considerations:
• Fast experiment: ~10 s or less
• Small # of particles:   O(1,000) particles
• Careful characterization: input uncertainty
• Robustness

- Particle-particle interaction important
- Particle-fluid interaction important
- Experimental results sensitive to some inputs

System:  Segregating Bed
• Glass particles in bed (~4300, ~3.1 mm dia.)
• HDPE particle (~9.4 mm dia.)
• Measurement:   rise time
• Repeats to establish output uncertainty



Experiments:  Aleatory Uncertainty (Particle Characterization)
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LaMarche et al. (2017) Chem Eng J 
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Effort 1 – Segregating Bed

Objective
• Replicate experiments with CFD-DEM
• Apply Full UQ and Reduced UQ techniques

• Release 2016.1
• CFD-DEM

- Soft-sphere
- Free-slip wall (gas phase)
- Rectangular grid

• Segregation time as key output



Sources of uncertainty

Aleatory = Natural variation, characterized by the measured CDF curve

Epistemic = Measurement precision, characterized as uniform probability between measured min & max 

Particle-phase Properties
HDPE diameter A
HDPE material density E
Glass diameter A
Glass material density E
Glass-glass coefficient of restitution A
Glass-wall coefficient of restitution A
Glass-HDPE coefficient of 
restitution A

Sphericity Α
Particle-particle coefficient of 
friction A

Particle-wall coefficient of friction A

Gas-phase Properties
Gas rate variance E
Outlet gas pressure E
Inlet gas temperature E

Dependent or Known Inputs
Gas viscosity (via temperature)
Nominal gas rate (via temp,

pressure, nominal gauge
readings)

Total mass of glass particles
(known)

Bed depth & width (known)

Width

Depth

Effort 1 – Uncertain Model Inputs



Full UQ input uncertainty propagation
– All input variables
– 127 epistemic points sampled
– 100 aleatory samples / epistemic point
– 12,700 simulations total

Results vs experiments
– Bias is for faster segregation

in simulations

Effort 1 – Full UQ



Aleatory = Natural variation

Epistemic = Measurement precision

Particle-phase Properties
HDPE diameter A
HDPE material density E
Glass diameter A
Glass material density E
Glass-glass coefficient of restitution A
Glass-wall coefficient of restitution A
Glass-HDPE coefficient of 
restitution A

Sphericity Α
Particle-particle coefficient of 
friction A

Particle-wall coefficient of friction A

Gas-phase Properties
Gas rate variance E
Outlet gas pressure E
Inlet gas temperature E

Sensitivity analysis
– Run base case
– Test high and low bounds for each input; 

hold others fixed
– Identify parameters that change output by >5%
– Eliminate others from forward propagation

Investment
– 270 runs,  27 runs with 10 repeats of each to 

account for variation in initial conditions

Uncertainty propagation
– Only influential variables
– 29 epistemic points sampled
– 100 aleatory samples / epistemic point
– 2,900 simulations total

Effort 1 – Reduced UQ



Direct comparison of forward propagation techniques
– Full UQ 

• 5 Epistemic variables
• 8 Aleatory variables
• 12,700 runs

– Reduced UQ 
• 3 Epistemic variables
• 3 Aleatory variables
• 3,170 runs

– Good agreement
• 75% reduction in

computational expense

Effort 1 – Full UQ vs Reduced UQ



What happens if we just attempt to capture the extremes?
– Conservative UQ 

• Use directional influence observed in sensitivity analysis (270 runs).
• Select combinations that should yield fastest and slowest segregation. 
• 20 runs (2 points, with 10 repeats of each to account for initial conditions) 

Method Result Runs
Conservative UQ 2.7 sec + 290
Reduced UQ 2.83 sec + 3170
Full UQ 2.58 sec + 12700

Effort 1 – Conservative UQ



Objective
• Extend analysis to a second system with different physics

– Release 2016.1
– DEM-only

• Soft-sphere
• Rotating tumbler
• Identical particles
• Only color is different

Effort 2 – Mixing in Tumbler



Key output  initial rate of mixing
• Calculate “Alike Neighbor Fraction” (ANF) for each particle
• Calculate average ANF (including all particles with four or more neighbors)
• Focus on slope of best-fit line between 0.5- and 2.5- rotations.

Effort 2 – Mixing in Tumbler



Aleatory = Natural variation, characterized by the measured CDF curve

Epistemic = Measurement precision, characterized as uniform probability between measured min & max 

Uncertain Inputs
Rotation rate E
Glass diameter A
Glass material density E
Glass-glass coefficient of restitution A
Glass-wall coefficient of restitution A
Particle-particle coefficient of 
friction A

Particle-wall coefficient of friction A

Known Inputs
Tumbler dimensions
Total mass of glass particles
Acceleration due to gravity

Effort 2 – Uncertain Model Inputs

Full UQ
Uncertain Inputs
Rotation rate E
Glass diameter A
Glass material density E
Glass-glass coefficient of restitution A
Glass-wall coefficient of restitution A
Particle-particle coefficient of 
friction A

Particle-wall coefficient of friction A

Reduced UQ



Direct comparison of forward propagation techniques
– Full UQ 

• 2 Epistemic variables
• 5 Aleatory variables
• 1000 runs

– Reduced UQ 
• 1 Epistemic variable
• 3 Aleatory variables
• 345 runs

– Good agreement
• 65% reduction in

computational
expense

Effort 2 – Full UQ vs Reduced UQ



What happens if we just attempt to capture the extremes?
– Conservative UQ 

• Use directional 
influence observed in 
sensitivity analysis 
(45 runs).

• Select combinations 
that should yield 
fastest and slowest 
mixing. 

• 6 runs (2 points, with 
3 repeats of each to 
account for initial 
conditions) 

Method Runs
Conservative UQ 51
Reduced UQ 345
Full UQ 1000

Effort 2 – Conservative UQ



Summary

Reduced UQ

• Performing a sensitivity analysis to eliminate insignificant input 
uncertainties can significantly reduce computational burden

• NOTE: Systems in which all epistemic uncertainties are important would 
not benefit from a sensitivity-analysis since primary computational gains 
of Reduced UQ come from reducing epistemic uncertainties

• agreed well with Full UQ at 65%-75% computational savings

Conservative UQ

• If only min/max output bounds are desired, using sensitivity 
analysis to guide inputs for min/max cases is promising

• agreed well with Full UQ for both efforts at a 95% computational savings
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