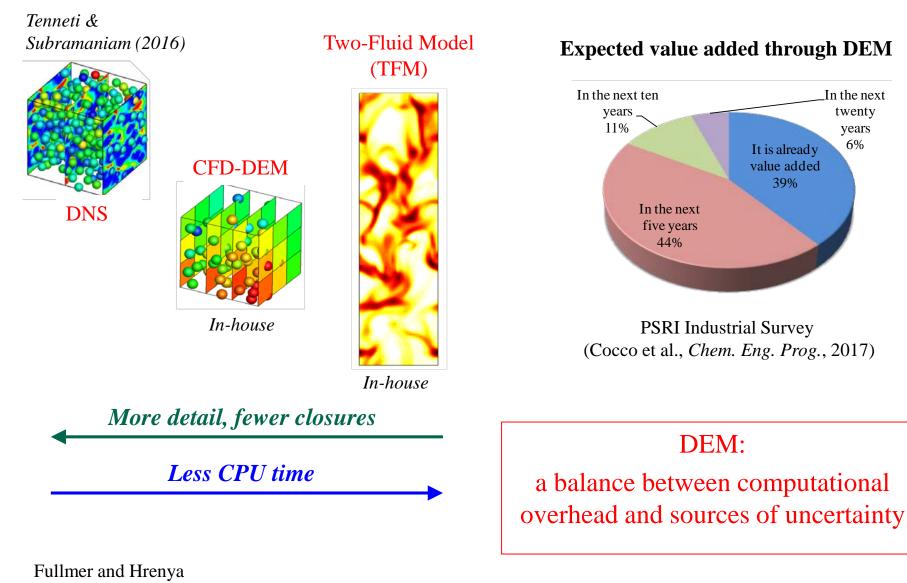
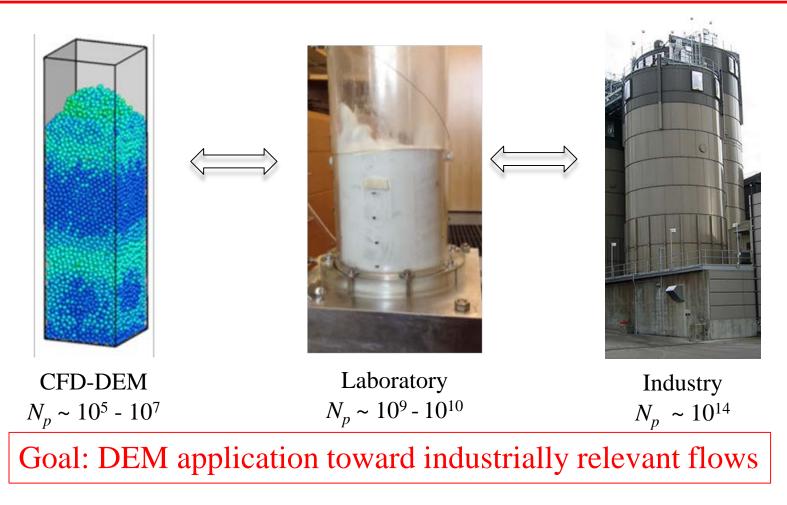

MFIX-DEM Enhancement for Industry-Relevant Flows

Annual Project Review Meeting for Crosscutting, Rare Earth Elements, Gasification and Transformative Power Generation


> Pittsburgh, PA April 2019

Project leads

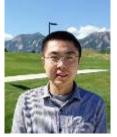
Dr. Ray Cocco (PSRI, co-PI) Dr. Ray Grout (NREL, co-PI) Prof. Thomas Hauser (Univ. CO, co-PI) Prof. Christine Hrenya (Univ. CO, PI)



Background: Numerical Methods for Studying Gas-solid Flows

(Ann. Rev. Fluid Mech., 2017)

Motivation: Big picture


Challenges

- Speed \Rightarrow Optimization & Algorithms (this talk)
- Results reliability \Rightarrow Validation & Uncertainty Quantification (this talk) 3

Team

University of Colorado Chemical & Biological Engineering DEM modeling of granular and gas-solid flows, MFIX

Prof. Christine Hrenya

Dr. William Fullmer Dr. Peiyuan Liu (now at NETL)

Dr. Steven Dahl

University of Colorado Research Computing *High-performance* computing, CFD

Prof. Thomas Hauser

Shadong Lao

Aaron Holt

PSRI Industrial Application and Experiments of Particle Flows

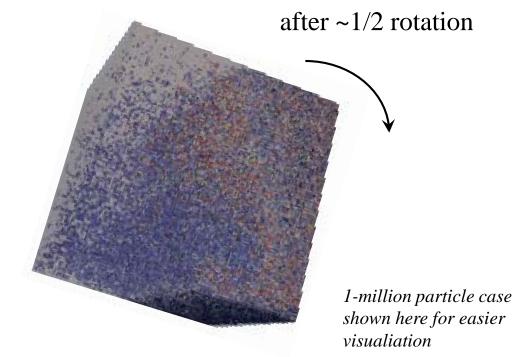
NREL

Computational Science High-performance computing, CFD

Dr. Ray Grout Dr. Hari Sitaraman

Deepthi Vaidhynathan

Dr. Ray Cocco



Dr. Casev LaMarche

Recent Accomplishment: 1-billion particle case

Rotating square tumbler

- Gaussian PSD (250-750 μm)
- Domain: 0.72m x 0.72m x 0.72 m
- Simulation time: 1 sec (1 full rotation)

Background

Computer models are often deterministic

• One set of inputs \rightarrow one set of outputs

Most real-world problems include input uncertainty

- Measurement precision
- Natural variability (e.g., particle size distribution)

State-of-the-art Uncertainty Quantification (*Full UQ*)

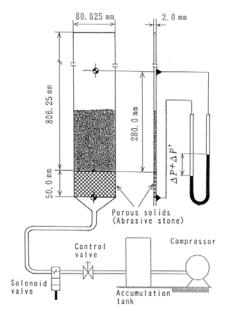
- Direct sampling over the entire phase-space of uncertain inputs
- Establishes range and likelihood of possible outcomes
- Often exceedingly expensive (thousands of simulations; many more than validation)

Need to reduce computational expense to apply UQ to CFD-DEM

- Reduced UQ
 - Identify and propagate uncertainties for key input parameters only

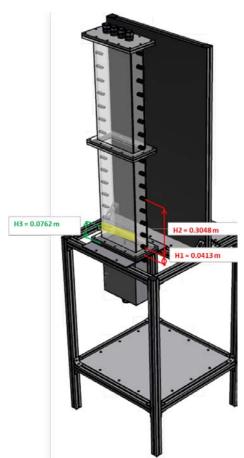
CFD-DEM Small-Scale Experiments: Prior Work

Common system


- Small rectangular FB
- Group D particles
- $N_p \sim 10^5$

Metrics to compare

- Flow patterns
- Pressure drop
- Velocity profiles



• Code Validation

(Yuu et al., Powder Tech., 2000)

NETL Small-Scale Challenge (SSCP) Problem I (Gopalan et al., *Powder Tech.*, 2016)

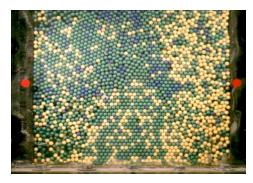
Semi-circular bed with Horizontal Jets (Fullmer, LaMarche, Issangya, Liu, Cocco & Hrenya, AIChE J., 2018)

Motivation and Objective: UQ effort

Full UQ

Epistemic Uncertainty – Unknown

• sample N³+2 epistemic uncertainties


Aleatoric Uncertainty – Measured

• 100 samples/epistemic sample

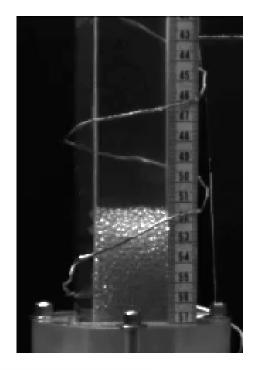
To date, full UQ of CFD-DEM prohibitive

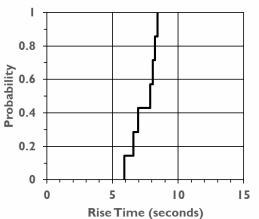
Current Objectives

- 1. Design experiment in which Full and Reduced UQ can be performed
- 2. Directly test Full UQ vs. Reduced UQ using WF DEM

- 60,000 particles
- 192 cpu hrs/simulation
- 5 epistemic uncertainties \rightarrow 12,700 Simulations

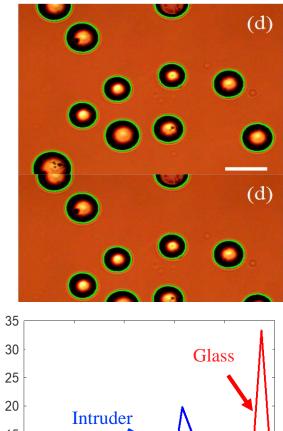
Experimental Design

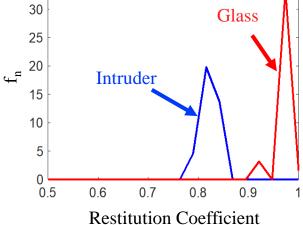

Target: Very-very small scale challenge problem (VVSSCP) with simulation times < 8 hours on a single CPU

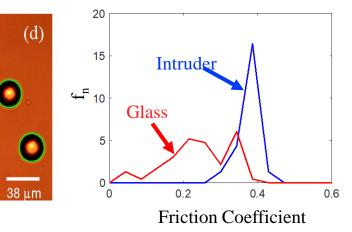

Important Considerations:

- Fast experiment: ~10 s or less
- Small # of particles: O(1,000) particles
- Careful characterization: *input uncertainty*
- Robustness
 - Particle-particle interaction important
 - Particle-fluid interaction important
 - Experimental results sensitive to some inputs

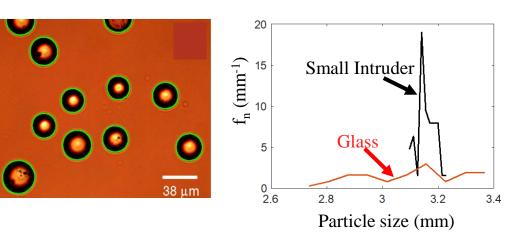
System: Segregating Bed


- Glass particles in bed (~4300, ~3.1 mm dia.)
- HDPE particle (~9.4 mm dia.)
- Measurement: rise time
- Repeats to establish *output uncertainty*



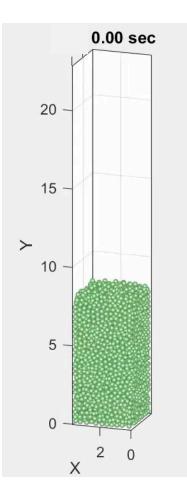

Experiments: Aleatory Uncertainty (Particle Characterization)

Coefficient of Restitution



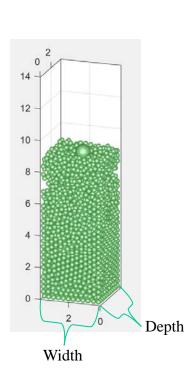
Coefficient of Friction

Size and shape


LaMarche et al. (2017) Chem Eng J 10

Objective

- Replicate experiments with CFD-DEM
- Apply *Full UQ* and *Reduced UQ* techniques


- Release 2016.1
- CFD-DEM
 - Soft-sphere
 - Free-slip wall (gas phase)
 - Rectangular grid
- Segregation time as key output

Effort 1 – Uncertain Model Inputs

Sources of uncertainty

Particle-phase Properties	
HDPE diameter	A
HDPE material density	E
Glass diameter	A
Glass material density	E
Glass-glass coefficient of restitution	A
Glass-wall coefficient of restitution	A
Glass-HDPE coefficient of restitution	A
Sphericity	А
Particle-particle coefficient of friction	A
Particle-wall coefficient of friction	A

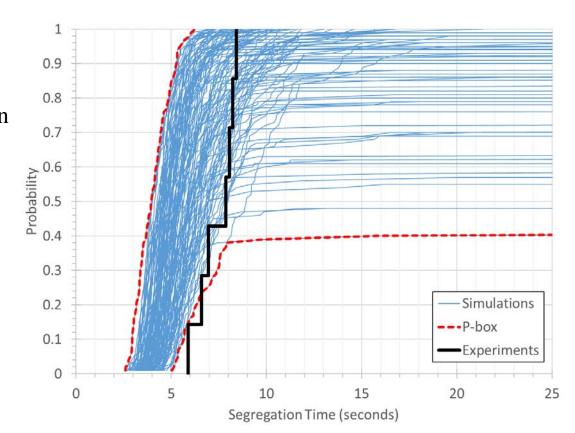
Gas-phase Properties	
Gas rate variance	E
Outlet gas pressure	E
Inlet gas temperature	E

Dependent or Known Inputs

Gas viscosity (via temperature) Nominal gas rate (via temp, pressure, nominal gauge readings) Total mass of glass particles (known) Bed depth & width (known)

Aleatory = Natural variation, characterized by the measured CDF curve

Epistemic = Measurement precision, characterized as uniform probability between measured min & max


Effort 1 – Full UQ

Full UQ input uncertainty propagation

- All input variables
- 127 epistemic points sampled
- 100 aleatory samples / epistemic point
- 12,700 simulations total

Results vs experiments

 Bias is for faster segregation in simulations

Effort 1 – *Reduced UQ*

Sensitivity analysis

- Run base case
- Test high and low bounds for each input; hold others fixed
- Identify parameters that change output by >5%
- Eliminate others from forward propagation

Investment

270 runs, 27 runs with 10 repeats of each to account for variation in initial conditions

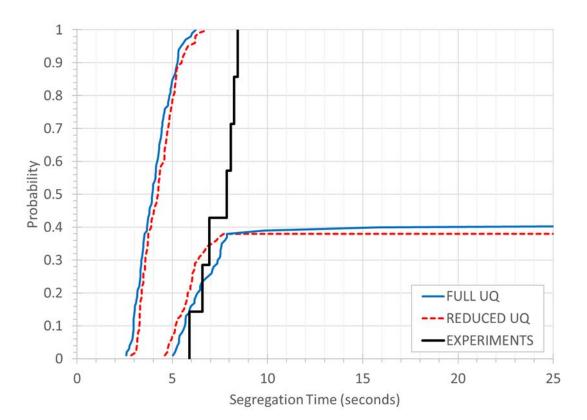
Uncertainty propagation

- Only influential variables
- 29 epistemic points sampled
- 100 aleatory samples / epistemic point
- 2,900 simulations total

\neg

Particle-phase Properties HDPE diameter **HDPE** material density Glass diameter А Glass material density E Glass-glass coefficient of restitution A Glass-wall coefficient of restitution A **Glass-HDPE coefficient of** A restitution Sphericity А Particle-particle coefficient of А friction Particle-wall coefficient of friction **Gas-phase Properties** Gas rate variance E Autlat and processing

Outlet ga	as pressure	
Inlet gas	s temperatur	re

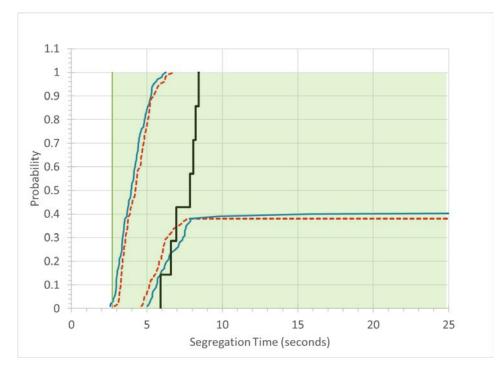

E

Aleatory = Natural variation

Epistemic = Measurement precision

Direct comparison of forward propagation techniques

- Full UQ
 - 5 Epistemic variables
 - 8 Aleatory variables
 - 12,700 runs
- Reduced UQ
 - 3 Epistemic variables
 - 3 Aleatory variables
 - 3,170 runs
- Good agreement
 - 75% reduction in computational expense

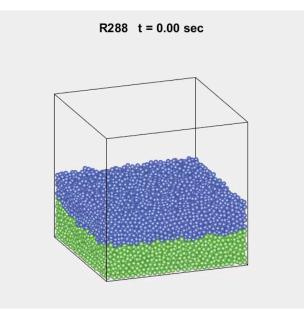


Effort 1 – *Conservative UQ*

What happens if we just attempt to capture the extremes?

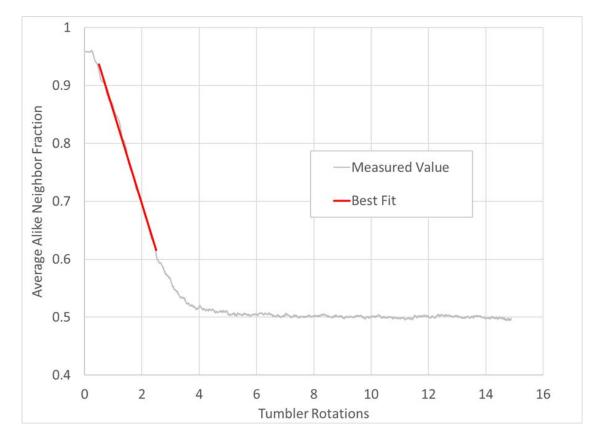
- Conservative UQ
 - Use directional influence observed in sensitivity analysis (270 runs).
 - Select combinations that should yield fastest and slowest segregation.
 - 20 runs (2 points, with 10 repeats of each to account for initial conditions)

Method	Result	Runs
Conservative UQ	2.7 sec +	290
Reduced UQ	2.83 sec +	3170
Full UQ	2.58 sec +	12700



Objective

• Extend analysis to a second system with different physics



- Release 2016.1
- **DEM-only**
 - Soft-sphere
 - Rotating tumbler
 - Identical particles
 - Only color is different

Key output \rightarrow initial rate of mixing

- Calculate "Alike Neighbor Fraction" (ANF) for each particle
- Calculate average ANF (including all particles with four or more neighbors)
- Focus on slope of best-fit line between 0.5- and 2.5- rotations.

Known Inputs

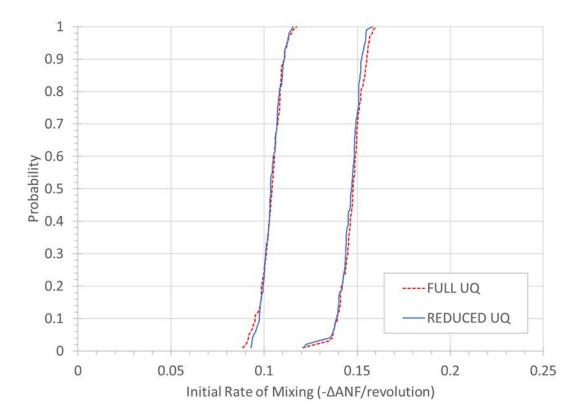
Tumbler dimensions Total mass of glass particles

Acceleration due to gravity

Full UQ

Uncertain Inputs	
Rotation rate	E
Glass diameter	A
Glass material density	E
Glass-glass coefficient of restitution	A
Glass-wall coefficient of restitution	A
Particle-particle coefficient of friction	A
Particle-wall coefficient of friction	A

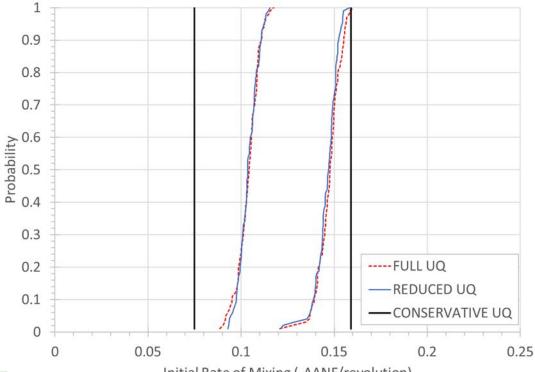
Reduced UQ


Uncertain Inputs	
Rotation rate	
Glass diameter	A
Glass material density	E
Glass-glass coefficient of restitution	А
Glass-wall coefficient of restitution	A
Particle-particle coefficient of	Α
friction	Α
Particle-wall coefficient of friction	A

Aleatory = Natural variation, characterized by the measured CDF curve

Epistemic = Measurement precision, characterized as uniform probability between measured min & max

Direct comparison of forward propagation techniques


- Full UQ
 - 2 Epistemic variables
 - 5 Aleatory variables
 - 1000 runs
- Reduced UQ
 - 1 Epistemic variable
 - 3 Aleatory variables
 - 345 runs
- Good agreement
 - 65% reduction in computational expense

What happens if we just attempt to capture the extremes?

- Conservative UQ
 - Use directional influence observed in sensitivity analysis (45 runs).
 - Select combinations that should yield fastest and slowest mixing.
 - 6 runs (2 points, with 3 repeats of each to account for initial conditions)

Method	Runs
Conservative UQ	51
Reduced UQ	345
Full UQ	1000

Initial Rate of Mixing (-ΔANF/revolution)

Reduced UQ

- Performing a sensitivity analysis to eliminate insignificant input uncertainties can significantly reduce computational burden
 - <u>NOTE:</u> Systems in which all epistemic uncertainties are important would not benefit from a sensitivity-analysis since primary computational gains of *Reduced UQ* come from reducing epistemic uncertainties
- agreed well with *Full UQ* at 65%-75% computational savings

Conservative UQ

- If only min/max output bounds are desired, using sensitivity analysis to guide inputs for min/max cases is promising
- agreed well with Full UQ for both efforts at a 95% computational savings