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Outline

 Why do this?
o Getting from existing fleet to next-generation

 What are the objectives?
 Desired characteristics for the next-generation of coal plants
o Status quo of existing PSE tools to solve this problem

« How do we solve the problem?

 The need for advanced modeling and optimization tools
« How the IDAES project fits here?
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Why do this?

* Fossil Energy Objectives

— Cost of Energy and CO, Capture from Advanced Power Systems — Develop cost-
effective, efficient, and reliable CO, separation technologies and energy conversion
technologies that inherently capture CO,, for both féWw and existing coal-fired power
plants.

— Power Plant Efficiency Improvements — Develop cost-effective, reliable technologies to
Improve the efficiency of MéW and existing coal-fired power plants.

What should be the characteristics of the next-generation of
coal plants to provide secure, stable, and reliable power?
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What are the desired characteristics?

Flexible operations to meet the needs of the modern grid
- High ramp rates and minimum load operation (renewable targets 2050)

Innovative solutions to improve efficiency and reduce emissions
- >40% HHYV efficiency, near zero emissions, low water consumption

Resilient capability to provide power to United States
- Minimize forced outages with enhanced monitoring and diagnostics

Small scale compared to conventional utility-scale coal power plants
- 50-350 MW, minimize field construction costs

Transformative of how coal technologies are designed and deployed
- Coupled with energy storage, integrate with coal upgrading
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Designing Coal FIRST Power Plants

Project Inception: 2019

Flexible, Innovative, Resilient, Small and Transformational
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Develop robust conceptual design tools to identify
the flexible design (< 350 MW)

Develop reliable cost-estimating methodologies for
new and existing candidate technologies

Create advanced models for transformational
technologies that enable optimal design and
analysis

Develop design targets that best integrate with the
evolving needs of the electric grid

Identify innovative materials using optimization that
might help meet high performance metrics



Process Design Studies — Status Quo

Techno-economic Studies Conceptual Design Studies

Update model ,T, v =
» Detailed steady-state models v « Extensive search space v \
» Reasonable cost estimates v * Realize synergies between processes v
* Not extensive, case by case analysis % e Simple input/output models %
« Difficult to realize synergistic advantages x « Performance prediction maybe erroneous x
\- More a sensitivity study x / « No commercial tool; mostly academic x

\_J

Validate design
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The IDAES Approach

AML platforms

Equation
Oriented
platforms

Sequential
Modular
platforms

Effectiveness for optimization

\ 4

Time required to develop

Miller et al (2018), Computer Aided Chemical Engineering
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Superstructure for Coal FIRST (Power Generation)

Pollution Control

Combustion Heat Transfer &
Source Power Generation
Energy Storage
B




Conceptual Design Tools in IDAES
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PyoSyn Framework in IDAES

| Process 1 Process 2
. [

>l Process Equations
— > I > — Costing correlation
i—» — :|_> —> [ g ‘ or

Costing correlation
+
Binary variable {0, 1}

A
\ 4

+
Binary variable {0, 1}

Process Equations ‘

T* AR

9 disjunctions, 18 binary variables - 315 choices

N LN -v PYOMO minz = f(x) Objective Function
}”PYOMO Y, “GDP ’

s.t.glx) <0 Global Constraints

« Generalized Disjunctive Programming Vien s oo < o K€K sinctons
e Automatically implement either-or logic Yie g Y AL

* Less human pre-processing, fewer modeling errors Q(Y) = True Logic Propositions

x € R"Y,; € {True,False} k € K,i € D,

IDAES
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Implementation in IDAES — A Simple Example

m = pe.ConcreteModel()
m.fs = fs = FlowsheetBlock(default={"dynamic": False})
fs.properties = props = PhysicalParameterBlock(default={"valid_phase": 'Vap'})

Isentropic Compression of an Ideal Gas
fs.feed = feed =G@@|desﬂimizﬁrmﬁrﬁmga695t props})
feed. flow_mol.fix(1) \\\\\\‘
feed.pressure.fix(0.101325)

feed. temperature . fix(3) .

fs.product = pfoduct = Product(deﬁﬁ:f;::"pruperty_package": props})
product.pressufe[0.0].fix(1.01325)

300K —— 10 atm
1at

fs.gILgle_stage_compressor_disjunct = sscd = gdp.Disjunct(cpncrete=True)
sscd.compressor] = Idealps default={"prpperty_package": m.fs.properties,
"ha}_phase_equilibrium": False})

network.
network.

sscd.streaml
sscd.stream2

nation=sscd.compressor.inlet)
Toutlet, destination=product.inlet)

fs.two_stage_compressor_disjunct = tscd = gdp.Disjunct(concrete=True)

tscd.compressorl = IdealGasIsentropicCompressor(default={"property_package": m.fs.properties,
"has_phase_equilibrium": False})

tscd.compressor2 = IdealGasIsentropicCompressor(default={"property_package": m.fs.properties,
"has_phase_equilibrium": False})

tscd.cooler = Heater(default={"property_package": props, "has_phase_equilibrium": False})

tscd.cooler.heat_duty[@.@].setub(@) # it is a cooler

tscd.cooler.outlet.temperature[0.0].setlb(3)

network.Arc
network.Arc
network.Arc
network.Arc

tscd.streaml
tscd. stream2
tscd.stream3
tscd. streamd

source=feed.outlet, destination=tscd.compressorl.inlet)
source=tscd.compressorl.outlet, destination=tscd.cooler.inlet)
source=tscd.cooler.outlet, destination=tscd.compressor2.inlet)
source=tscd.compressor2.outlet, destination=product.inlet)

— o —

SOLVE!

< 25 lines of code }

.y oabu

T
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g)ne Possible Design

Coal
Ultra super-
—| critical PC
Air
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©*/ IDAES

Zone 10

Zone 9

Zone 8

Zone 7

Zone 6

Zone 5

Zone 4

Zone 3

Zone 2

Zone 1

Detailed Modeling

4—Over-Fire Level

4—Burner Level 4
4—Burner Level 3
<4—Burner Level 2

<4—Burner Level 1
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| IDAES

Advanced Modeling in IDAES
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«  Customized model library for power |

plant unit operations

.| IDAES

1D-3D Boiler Model

Zone 10

Zone 9

Zone 8

Zone 7

Zone 6

Zone 5

Zone 4

Zone 3

Zone 2

Zone 1

Unit Models

4—Over-Fire Level
<4—Burner Level 4
<4—Burner Level 3
<4—Burner Level 2

<4—Burner Level 1

Detailed Modeling

Hybrid boiler model

CO, Capture Model

Liquid-gas contactor model

Column Models

« MESH equations for each tray

15



.+ IDAES

Grid and Infrastructure Planning
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Generation Expansion Planning

+ Time scale approach: Ef;fr Vears: 1€ 7 e
. Multi-year, days per year, hours per day ‘ —
» Region and cluster representation j:;;?fi";?*”*: NN
» Area represented by a few zones Hours q( r )-I-i-ii
» Potential locations are the midpoint in Regions: 7 € R Clusters: i € T, T
each zc.)ne x’“ o ga’ -
 Clustering of generators: e &
. Transmission representation :;WH
* Flow in each line is determined by the ;'T: ﬁm -
energy balance between each region r g -

IDAES 17




Project Milestones & Timeline

APPLICATIONS

TOOLSET
_ Use PyoSyn for Use PyoSyn for COAL Dynamic models for Use PyoSyn for Coal FIRST with
I Project energy storage sub- FIRST plant design solid fuel reactors additional product routes
nception

system PY ° L
4 4 H H ]
H Use PyoSyn with ! i ] I
! IDAES Unit Models ! ! : i
H ® H i 1 !

1 1
I i I i i H
H 1 H I 1 !
i i I i i :
f i i ; ; i >
1/1/19 6/30/19 12/31/19 6/30/20 12/31/20
Initial Cost Database Energy Cost framework for Coal FIRST Multi-objective & uncertainty
Storage capabilities in PyoSyn
. : - : Incorporate uncertainty in General cost breakdown
Initial version of materials design expansion planning methodology for Unit Model
tool Library

— 18
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Conclusions

e Coal FIRST plant design
e Large and complex problem

« Multi-scale (particle level to grid interactions)
« EXxplore value addition for coal plants (power + )

-

e Detailed steady-state models v

 Reas %P)&B%@b% ?(tfe_ éneratjon

~

* Not extensive, y .casg analysis x
 Difficult to realize's F&& g advantages x

\- More a sensitivity study x /

Extensive search space v

R.eaIiAep%MWf@eﬁql%eM%% processes v
SUBpR WI‘PBWQL@O AtBbiems

Performance pre N maybe erroneous x
No commercial tool; mostly academic x /
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Modular Coal-fired Power Plants: Cost of Electricity

Costing Methodology (Investment + Operatingyi, + Operating,qr)

 [nvestment cost COE = (Net Power)

 Operating cost
— Fixed: labor, maintenance, others

— Variable: utilities “coolant & steam,”
waste water, others

Quality Guidelines for Energy System Studies: Performing a
Techno-economic Analysis for Power Generation Plants
(DOE/NETL-2015/1726)

* Net Power Product and Process Design Principles Synthesis (Seider et
« Storage Technologies al., 2009) Purchase cost correlations

- Modular Power Plants (250 MW to 500 MW): Quality Guidelines for Energy System Studies: Capital i
! Cost Scaling Methodology (DOE/NETL-2013/341) I

== —| a,RP,RC,SP |— — — —-— o

_ Subcritical, Supercritical, and ultra-supercritical
Based on technologies air-fired and oxy-fired

1
1 | :
1 . B
i Scaled Cost \ op\© — o2 i o
: SC = RC <L | « with and without CO, capture | !
| ° i i I I . 1
1

1 . -
1

Reference Cost Reference Parameters llinois No. 6 coal, PRB and ND Lignite coals
IGCC

Large Data base (vendor quotes)
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