Radically Engineered Modular Air Separation System with Tailored Oxygen Sorbents

Fanxing Li North Carolina State University

Project Partners: Thermosolv LLC and West Virginia University

04/09/2019

Project Objectives

- Develop radically engineered modular air separation system (REM-ASU) for small-scale coal gasifiers (1-5 MW)
- Achieve air separation under a cyclic redox scheme using advanced mixed-oxide based oxygen sorbents (OS)
- Reduce 30% energy consumption for air separation using REM-ASU compared to state-of-the-art cryogenic air separation process
- Demonstrate the robustness and performance of OS and REM-ASU

Current Status of Project

- Developed LSCF-CF mixed oxides with 2.2-4.2% O₂ capacity, 2-4 times of benchmark CaMn_{0.95}Fe_{0.05}O₃ oxygen sorbent
- Demonstrated high activity of LSCF-CF OS with redox rate of 1.35-2.04 mg O₂/mg sorbent-min, 4-6 times of benchmark CaMn_{0.95}Fe_{0.05}O₃OS
- Designed low temperature SrFeO₃ based OS for chemical looping air separation at 450-600°C
- Demonstrated steam resistant SrFeO₃ based OS for 1000 cycles of air separation with <3% degradation

Publication and conference presentations

- Jian Dou, Emily Krzystowczyk, Amit Mishra, Xingbo Liu, and Fanxing Li*. *Perovskite promoted mixed cobalt-iron oxides for enhanced chemical looping air separation.* **ACS Sustainable Chem. Eng.** 2018, 6, 15528-15540.
- Amit Mishra, Tianyang Li, Fanxing Li*, and Erik Santiso*. Oxygen Vacancy Creation Energy in Mn-Containing Perovskites: An Effective Indicator for Chemical Looping with Oxygen Uncoupling. Chemistry of Materials, 2018, 31, 689-698.
- Jian Dou, Emily Krzystowczyk, Xijun Wang, Amit Mishra, Thomas Robbins, and Fanxing Li*. *Perovskite Promoted Mixed Co-Fe Oxides for Enhanced Chemical Looping Air Separation*. ACS National Conference, Orlando, 2019

Air Separation

Linde Air Separation Plant (www.linde-engineering.com)

- N₂ and O₂ are the top two widely used industrial gases, > \$4.3 billion annual revenue
- Oxygen is widely used for production of steel (~48%), chemicals (~19%), and glass
- Emerging Oxy-fuel combustion for efficient CO₂ capture

Cryogenic vs Chemical Looping Air Separation

	Cryogenic	Chemical looping
Status	mature	developing
Economic range (sTPD)	>20	Undetermined
Energy consumption (kW/kg O ₂)	0.21	0.05-0.07
Thermodynamic efficiency (%)	25%	>75%
Oxygen purity (%)	99+	99+
By product capability	Excellent	Poor

Chemical looping air separation is energy efficient

Oxygen Sorbent Development: Challenges and Opportunities

Mixed oxides are necessary in order to match P_{O2} of oxygen carriers with air separation conditions

$(La_xSr_{1-x})Co_yFe_{1-y}O_3 - CoFe$ (LSCF-CF) Composites

- Co-Fe mixed oxide to tune redox property
- LSCF to promote oxygen diffusion and reduce oxygen diffusion barrier

Dou et al., ACS Sustainable Chem. Eng. 2018, 6, 15528

Fe enhances oxidation rate

- Fe increases oxidation rate by 2-5 times
- Balanced oxidation and reduction rates maximize O₂ capacity (3.4%)

LSCF improves oxygen capacity

- Co:Fe=9:1, Ar-20%O₂, 650-850°C
- Negligible oxygen capacity at 650-750 °C
- LSCF increases oxygen capacity by 2.5 times

LSCF improves oxygen capacity

- LSCF increases O₂ capacity by 37-260%
- LSCF decreases reduction temperature by 18-46°C

LSCF increases redox rates

LSCF increases both oxidation and reduction rates by 4-5 times

Structure of LSCF-CF composites

LSCF-CF consists of mixed phases from LSCF and CF

SEM/EDX of LSCF-CF

- Particles are composed of small grains with a size range of 2-3 µm
- Well mixing of LSCF and CF at sub-micrometer level

Stability of LSCF-CF (1:1)

LSCF enhances oxygen sorbent stability for extended redox cycling at 850°C for 100 cycles

Screening of low temperature oxygen sorbents

Calculated with data from Materials Project

DFT results from NCSU

SrFeO₃ is identified as low temperature oxygen sorbents

Effect of A or B site doping on oxygen vacancy formation energy

Doping at A or B sites can effectively lower oxygen vacancy formation energy

Effect of A site doping on SrFeO_{3-δ}

Sample F shows increased oxygen vacancy with doping

NC STATE UNIVERSITY

Effect of A/B site doping on O₂ capacity

A-site doping indicates Sample F possesses superior oxygen capacity

B-site doping indicates Sample D and sample J possess superior oxygen capacity

Stability of sample D

- Red: 2.5%H₂O/Ar, 6 min; Oxi: 2.5%H₂O/20%O₂/Ar, 4 min; 600°C
- Sample D is stable for 1000 redox cycles less than 3% degradation

Stability of sample D

Less than 3% degradation of redox rate and oxygen capacity after 1000 cycles

Physical and Structural Properties

Structure of sample D remains stable after 1000 redox cycles

Cycled 1000-1700

- Ran next 700 cycles
 - Reduced reduction and oxidation time to optimize cycles
- 5% decrease of oxygen capacity after 1700 cycles

Electrical Conductivity Relaxation (ECR) measurement of sample D

- Characteristic thickness $L_c = D/k = ~200 \ \mu m$, within particle size range of 150-250 μm
- Both oxygen diffusion and surface oxygen exchange determines redox kinetics

Electrical Conductivity Relaxation (ECR) measurement of sample L

- Characteristic thickness $L_c = D/k = 86-116 \ \mu m$, smaller than particle size range of 150-250 μm
- Surface oxygen exchange limits redox kinetics

Stability of sample L at 450°C

- Red: Ar, 6 min; Oxi: 20%O₂, 4 min; 450°C, 100 cycles
- Oxygen production rate: 0.082% O₂/min
- Bed size factor: 1693 lbs/TPD O₂

Stability of sample L at 500°C

- Red: Ar, 4 min; Oxi: 20%O₂, 2 min; 500°C, 100 cycles
- Oxygen production rate: 0.156% O₂/min
- Bed size factor: 886 lbs/TPD O₂

Summary of "high temperature" oxygen sorbents

- Balanced oxidation and reduction rates improve oxygen capacity
- LSCF promotes metal oxide dispersion and oxygen transport
- LSCF increases average redox rates by 4 times and oxygen capacity by 2.5 times
- LSCF enhances stability of oxygen sorbents

Summary of "low temperature" oxygen sorbents

- Screening of oxygen sorbents with low reduction temperature by The Materials Project
- Doping at A or B site of SrFeO₃ increases oxygen vacancy
- Highly active doped SrFeO₃ with 0.5-1.0% O₂ capacity for air separation at temperature below 600°C
- Steam resistant sample D oxygen sorbent is stable for 1000 redox cycles

NCSU

- Stability test (i.e., 2000 cycles) of LSCF-CF and A or B site doped SrFeO₃ oxygen sorbents in the presence of steam and obtaining two or more oxygen sorbents with <5% degradation (Subtask 5.1, 04/01/2019-06/30/2019)
- Further optimization in oxygen capacity and redox kinetics of doped SrFeO3 OS (04/01/2019-12/31/2019)
- Fixed bed evaluation of LSCF-CF and doped SrFeO₃ oxygen sorbents (Subtask 5.2, 07/01/2019-09/30/2019)
- Testing oxygen sorbents prepared by Thermosolv using scaled up synthesis (Subtask 7.2, 10/01/2019-03/31/2020)

NCSU

Process analysis of REM-ASU for modular coal gasification (Subtask 9.1, 04/01/2020-12/31/2020)

Thermosolv

- **Develop a preliminary REM-ASU design** with > 30% reduction in energy consumption based on the adsorber/desorber model developed by WVU under subtask 6.1 (Subtask 6.2, 04/01/2019-12/31/2019)
- Scaled-up production of batches (25 kg/batch) of oxygen sorbents with air separation performance to achieve >30% reduction in energy consumption comparing to cryogenic ASU (Subtask 7.1, 10/01/2019-03/31/2020)

Thermosolv

- Preparation of the Pilot Facility (Subtask 8.1, 10/01/2019-09/30/2020)
- Pilot scale testing of the REM-ASU technology to achieve >95% pure O2 for over 2000 cycles with less than 10% decrease in oxygen storage/release capacity (Subtask 8.2, 10/01/2019-9/30/2020)
- Development of techno-economic models and commercialization plans. Identify an REM-ASU system design and OS material with >30% reduction in energy consumption comparing to cryogenic ASU (Subtask 9.2, 04/01/2020-12/31/2020)

WVU

- Continue characterizing oxygen transport kinetics of LSCF-CF and doped SrFeO₃ oxygen sorbents (04/01/19-12/31/19)
- Modeling of Adsorption/Desorption Operations using Advanced Sorbents (Subtask 6.1, 04/01/19-12/31/19)

Market Benefits/Assessment

- REM-ASU produces low cost oxygen compatible with modular coal gasification
- REM-ASU can lead to 30% reduction in energy consumption comparing to cryogenic method for air separation
- REM-ASU integrates with gasification system for lowgrade heat utilization and O₂ cost reduction
- REM-ASU has lower capital cost and is easy to scale up

Technology-to-Market Path

- Design oxygen sorbents with high O₂ capacity and high activity for efficient air production
- Demonstrate robust and steam resistant oxygen sorbents for long term air separation via pressure swing without using vacuum desorption
- Develop modular ASU for pilot scale testing to produce 95% O₂ over 2000 cycles with less than 10% degradation
- Integrate REM-ASU with 1-5 MW modular coal gasifier with >30% reduction in energy consumption for oxygen generation comparing to conventional ASUs.
- Techno-Economics and commercialization plan development

REM-ASU and Gasifier Integration

REM-ASU has the potential to be efficient, flexible, and cost-effective

Conclusions

- REM-ASU has the potential to produce low cost oxygen via pressure swing with oxygen sorbent materials
- REM-ASU is tailored to be compatible with 1-5 MW coal gasifier, with the potential for >30% reduction in energy consumption for air separation
- Low cost oxygen reduces cost for coal gasifier deployment, leading to cost effective CO₂ capture and utilization
- Future work include demonstration of robustness and steam resistance of oxygen sorbents for over 2000 cycles with less than 5% degradation, scale up, and demonstration

NC STATE UNIVERSITY

Acknowledgement

NCSU:

Dr. Jian Dou, Ms. Emily Krzystowczyk, Dr. Amit Mishra, Dr. Xijun Wang, Mr. Thomas Robbins

WVU:

Prof Xingbo Liu, Dr. Wenyuan Li, Dr. Liang Ma, Dr. Shiyue Zhu

THERMOSOLV LLC

Drs. Vijay Seith, Beau Braunberger, Anthony Richard

Thank you!

