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Project Objectives

e Develop radically engineered modular air separation
system (REM-ASU) for small-scale coal gasifiers (1-5
MW)

e Achieve air separation under a cyclic redox scheme
using advanced mixed-oxide based oxygen sorbents
(0S)

 Reduce 30% energy consumption for air separation
using REM-ASU compared to state-of-the-art
cryogenic air separation process

 Demonstrate the robustness and performance of OS
and REM-ASU
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Current Status of Project

* Developed LSCF-CF mixed oxides with 2.2-4.2% O,
capacity, 2-4 times of benchmark CaMn, ocFe; ;=04
oxygen sorbent

 Demonstrated high activity of LSCF-CF OS with redox
rate of 1.35-2.04 mg O,/mg sorbent-min, 4-6 times of
benchmark CaMng o:Fe; 05 OS

» Designed low temperature SrFeO, based OS for
chemical looping air separation at 450-600°C

 Demonstrated steam resistant SrFeO; based OS for
1000 cycles of air separation with <3% degradation
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Publication and conference
presentations

« Jian Dou, Emily Krzystowczyk, Amit Mishra, Xingbo Liu, and
Fanxing Li*. Perovskite promoted mixed cobalt-iron oxides for
enhanced chemical looping air separation. ACS Sustainable
Chem. Eng. 2018, 6, 15528-15540.

« Amit Mishra, Tianyang Li, Fanxing Li*, and Erik Santiso*. Oxygen
Vacancy Creation Energy in Mn-Containing Perovskites: An
Effective Indicator for Chemical Looping with Oxygen Uncoupling.
Chemistry of Materials, 2018, 31, 689-698.

e Jian Dou, Emily Krzystowczyk, Xijun Wang, Amit Mishra, Thomas
Robbins, and Fanxing Li*. Perovskite Promoted Mixed Co-Fe
Oxides for Enhanced Chemical Looping Air Separation. ACS
National Conference, Orlando, 2019
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Air Separation

Linde Air Separation Plant
(www.linde-engineering.com) °

N, and O, are the top two widely
used industrial gases, > $4.3
billion annual revenue

Oxygen is widely used for
production of steel (~48%),
chemicals (~19%), and glass

Emerging Oxy-fuel combustion
for efficient CO, capture
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Cryogenic vs Chemical Looping
Alr Separation

________Cryogenic | Chemical looping

Status mature developing
Economic range (sTPD) >20 Undetermined
Energy consumption (kW/kg O,) 0.21 0.05-0.07
Thermodynamic efficiency (%) 25% >75%

Oxygen purity (%) 99+ 99+

By product capability Excellent Poor

Chemical looping air separation is energy efficient
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Oxygen Sorbent Development: Challenges
and Opportunities
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(La,Sry,)Co Fe; ,O; — CoFe (LSCF-CF) Composites

e Co-Fe mixed oxide to tune
redox property

 LSCF to promote oxygen
diffusion and reduce
oxygen diffusion barrier

Dou et al., ACS Sustainable Chem. Eng. 2018, 6, 15528
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Fe enhances oxidation rate
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* Fe increases oxidation rate by 2-5 times

e Balanced oxidation and reduction rates maximize O,
capacity (3.4%)
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LSCF improves oxygen capacity
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o Co:Fe=9:1, Ar-20%0,, 650-850°C
* Negligible oxygen capacity at 650-750 °C

 LSCF Iincreases oxygen capacity by 2.5 times
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LSCF improves oxygen capacity
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e LSCF increases O, capacity by 37-260%
 LSCF decreases reduction temperature by 18-46°C
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LSCF Iincreases redox rates
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Structure of LSCF-CF composites
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SEM/EDX of LSCF-CF

small grains with a size
## range of 2-3 ym

55 . \Well mixing of LSCF and
CF at sub-micrometer level
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Stability of LSCF-CF (1:1)

Oxygen capacity (%)
11 2 3 a5
15t 5 2.0 20 20 20 20
cycles

Last 5 2.1 21 21 21 21
cycles

Weight (%)

850°C, 100 cycles

97 +

100 300 500 700 900 1100 1300 1500
Time (mins)

LSCF enhances oxygen sorbent stability for extended
redox cycling at 850°C for 100 cycles
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Screening of low temperature oxygen
sorbents
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SrFeQO, Is identified as low temperature oxygen sorbents
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Effect of A or B site doping on oxygen
vacancy formation energy
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Doping at A or B sites can effectively lower oxygen
vacancy formation energy 17
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Effect of A site doping on SrFeO,4
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Effect of A/B site doping on O, capacity
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Stability of sample D
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* Red: 2.5%H,0/Ar, 6 min; Oxi: 2.5%H,0/20%0./Ar, 4 min;
600°C

o Sample D is stable for 1000 redox cycles less than 3%
degradation
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Stability of sample D
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Less than 3% degradation of redox rate and oxygen capacity
after 1000 cycles
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Physical and Structural Properties

Sample D: Fresh sample ~ Sample D: 1000 cycle tested
: sample

—Fresh Sample D
—Cycled Sample D

10 20 30 40D 50 60 70 80
egrees

Structure of sample D remains stable after 1000 redox cycles
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Cycled 1000-1700

Redundant time for oxidation, so needed to reduce it
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 Ran next 700 cycles

— Reduced reduction and oxidation time to optimize cycles
5% decrease of oxygen capacity after 1700 cycles
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w Electrical Conductivity Relaxation (ECR)
V measurement of sample D
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e Characteristic thickness L. = D/k = ~200 pm, within
particle size range of 150-250 um

* Both oxygen diffusion and surface oxygen exchange
determines redox kinetics 24
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Electrical Conductivity Relaxation (ECR)
measurement of sample L
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e Characteristic thickness L, = D/k = 86-116 pm, smaller
than particle size range of 150-250 ym

o Surface oxygen exchange limits redox kinetics
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Stability of sample L at 450°C

99.6

Oxygen capacity (%)

292 15t 5 cycles 0.82 0.82 0.82 0.82 0.82
Last 5cycles 0.83 0.83 0.83 0.83 0.83

Weight (%)
3
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98.4 T T T T T T
113 313 513 713 913 1113

« Red: Ar, 6 min; Oxi: 20%0.,, 4 min; 450°C, 100 cycles
* Oxygen production rate: 0.082% O,/min
» Bed size factor: 1693 Ibs/TPD O,
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Stability of sample L at 500°C
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Oxygen capacity (%)
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* Red: Ar, 4 min; Oxi: 20%0.,, 2 min; 500°C, 100 cycles
e Oxygen production rate: 0.156% O,/min
e Bed size factor: 886 lbs/TPD O, .
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Summary of “high temperature” oxygen
sorbents

« Balanced oxidation and reduction rates improve oxygen
capacity

« LSCF promotes metal oxide dispersion and oxygen
transport

« LSCF increases average redox rates by 4 times and
oxygen capacity by 2.5 times

 LSCF enhances stability of oxygen sorbents

28
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Summary of “low temperature” oxygen
sorbents

e Screening of oxygen sorbents with low reduction
temperature by The Materials Project

« Doping at A or B site of SrFeO; increases oxygen
vacancy

» Highly active doped SrFeO; with 0.5-1.0% O, capacity
for air separation at temperature below 600°C

e Steam resistant sample D oxygen sorbent is stable for
1000 redox cycles

29
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Future work
NCSU

o Stability test (i.e., 2000 cycles) of LSCF-CF and Aor B
site doped SrFeO; oxygen sorbents in the presence of

steam and obtaining two or more oxygen sorbents with
<5% degradation (Subtask 5.1, 04/01/2019-06/30/2019)

e Further optimization in oxygen capacity and redox
Kinetics of doped SrFeO3 OS (04/01/2019-12/31/2019)

* Fixed bed evaluation of LSCF-CF and doped SrFeQO,
oxygen sorbents (Subtask 5.2, 07/01/2019-09/30/2019)

 Testing oxygen sorbents prepared by Thermosolv
using scaled up synthesis (Subtask 7.2, 10/01/2019-
03/31/2020)

30
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Future work

NCSU

 Process analysis of REM-ASU for modular coal
gasification (Subtask 9.1, 04/01/2020-12/31/2020)

Thermosolv

 Develop apreliminary REM-ASU design with > 30%
reduction in energy consumption based on the
adsorber/desorber model developed by WVU under
subtask 6.1 (Subtask 6.2, 04/01/2019-12/31/2019)

« Scaled-up production of batches (25 kg/batch) of oxygen
sorbents with air separation performance to achieve >30%
reduction in energy consumption comparing to cryogenic
ASU (Subtask 7.1, 10/01/2019-03/31/2020) .
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Future work

Thermosolv

« Preparation of the Pilot Facility (Subtask 8.1,
10/01/2019-09/30/2020)

* Pilot scale testing of the REM-ASU technology to
achieve >95% pure O2 for over 2000 cycles with less
than 10% decrease in oxygen storage/release capacity
(Subtask 8.2, 10/01/2019-9/30/2020)

e Development of techno-economic models and
commercialization plans. Identify an REM-ASU system
design and OS material with >30% reduction in energy
consumption comparing to cryogenic ASU (Subtask 9.2,
04/01/2020-12/31/2020) 32
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Future work

WVU

e Continue characterizing oxygen transport kinetics of
LSCF-CF and doped SrFeO4 oxygen sorbents
(04/01/19-12/31/19)

 Modeling of Adsorption/Desorption Operations using
Advanced Sorbents (Subtask 6.1, 04/01/19-12/31/19)

33
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Market Benefits/Assessment

« REM-ASU produces low cost oxygen compatible with
modular coal gasification

« REM-ASU can lead to 30% reduction in energy
consumption comparing to cryogenic method for air
separation

« REM-ASU integrates with gasification system for low-
grade heat utilization and O, cost reduction

« REM-ASU has lower capital cost and is easy to scale up

34
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Technology-to-Market Path

« Design oxygen sorbents with high O, capacity and high
activity for efficient air production

 Demonstrate robust and steam resistant oxygen sorbents
for long term air separation via pressure swing without
using vacuum desorption

* Develop modular ASU for pilot scale testing to produce
95% O, over 2000 cycles with less than 10% degradation

 Integrate REM-ASU with 1-5 MW modular coal gasifier
with >30% reduction in energy consumption for oxygen
generation comparing to conventional ASUSs.

e Techno-Economics and commercialization plan
development

35
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REM-ASU and Gasifier Integration
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REM-ASU has the potential to be efficient, flexible, and cost-effective
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Conclusions

« REM-ASU has the potential to produce low cost oxygen
via pressure swing with oxygen sorbent materials

« REM-ASU is tailored to be compatible with 1-5 MW coal
gasifier, with the potential for >30% reduction in energy
consumption for air separation

* Low cost oxygen reduces cost for coal gasifier
deployment, leading to cost effective CO, capture and
utilization

« Future work include demonstration of robustness and
steam resistance of oxygen sorbents for over 2000
cycles with less than 5% degradation, scale up, and
demonstration
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Thank you!
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