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Project Objectives 

• Develop radically engineered modular air separation 
system (REM-ASU) for small-scale coal gasifiers (1-5 
MW)

• Achieve air separation under a cyclic redox scheme 
using advanced mixed-oxide based oxygen sorbents 
(OS)

• Reduce 30% energy consumption for air separation 
using REM-ASU compared to state-of-the-art 
cryogenic air separation process

• Demonstrate the robustness and performance of OS 
and REM-ASU
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Current Status of Project
• Developed LSCF-CF mixed oxides with 2.2-4.2% O2

capacity, 2-4 times of benchmark CaMn0.95Fe0.05O3 
oxygen sorbent

• Demonstrated high activity of LSCF-CF OS with redox 
rate of 1.35-2.04 mg O2/mg sorbent-min, 4-6 times of 
benchmark CaMn0.95Fe0.05O3 OS

• Designed low temperature SrFeO3 based OS for 
chemical looping air separation at 450-600oC

• Demonstrated steam resistant SrFeO3 based OS for 
1000 cycles of air separation with <3% degradation
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Publication and conference 
presentations 

• Jian Dou, Emily Krzystowczyk, Amit Mishra, Xingbo Liu, and 
Fanxing Li*. Perovskite promoted mixed cobalt-iron oxides for 
enhanced chemical looping air separation. ACS Sustainable 
Chem. Eng. 2018, 6, 15528-15540.

• Amit Mishra, Tianyang Li, Fanxing Li*, and Erik Santiso*. Oxygen 
Vacancy Creation Energy in Mn-Containing Perovskites: An 
Effective Indicator for Chemical Looping with Oxygen Uncoupling. 
Chemistry of Materials, 2018, 31, 689-698.

• Jian Dou, Emily Krzystowczyk, Xijun Wang, Amit Mishra, Thomas 
Robbins, and Fanxing Li*. Perovskite Promoted Mixed Co-Fe 
Oxides for Enhanced Chemical Looping Air Separation. ACS 
National Conference, Orlando, 2019
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Air Separation

• N2 and O2 are the top two widely 
used industrial gases, > $4.3 
billion annual revenue

• Oxygen is widely used for 
production of steel (~48%), 
chemicals (~19%), and glass 

• Emerging Oxy-fuel combustion 
for efficient CO2 capture
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Linde Air Separation Plant
(www.linde-engineering.com)



Cryogenic vs Chemical Looping 
Air Separation

Cryogenic Chemical looping
Status mature developing
Economic range (sTPD) >20 Undetermined
Energy consumption (kW/kg O2) 0.21 0.05-0.07
Thermodynamic efficiency (%) 25% >75%
Oxygen purity (%) 99+ 99+
By product capability Excellent Poor

Chemical looping air separation is energy efficient
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Oxygen Sorbent Development: Challenges 
and Opportunities

Mixed oxides are necessary in order to match PO2 of 
oxygen carriers with air separation conditions

PO2: 0.21 atm

PO2: <10-6 atm

PO2: 0.01-0.05 atm

PO2: <0.1 atm

0.21 atm

10-6 atm
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(LaxSr1-x)CoyFe1-yO3 – CoFe (LSCF-CF) Composites

• Co-Fe mixed oxide to tune 
redox property

• LSCF to promote oxygen 
diffusion and reduce 
oxygen diffusion barrier

O2-

e-

O2-

e-

LSCF

La or SrCo or FeO

CF
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Dou et al., ACS Sustainable Chem. Eng. 2018, 6, 15528



Fe enhances oxidation rate

• Fe increases oxidation rate by 2-5 times 
• Balanced oxidation and reduction rates maximize O2

capacity (3.4%)
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LSCF improves oxygen capacity

• Co:Fe=9:1, Ar-20%O2, 650-850oC
• Negligible oxygen capacity at 650-750 oC
• LSCF increases oxygen capacity by 2.5 times
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LSCF improves oxygen capacity

• LSCF increases O2 capacity by 37-260% 
• LSCF decreases reduction temperature by 18-46oC
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LSCF increases redox rates

LSCF increases both 
oxidation and reduction 
rates by 4-5 times 
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Structure of LSCF-CF composites

LSCF-CF consists of mixed 
phases from LSCF and CF
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SEM/EDX of LSCF-CF

• Particles are composed of 
small grains with a size 
range of 2-3 μm

• Well mixing of LSCF and 
CF at sub-micrometer level 

14

 

 



Stability of LSCF-CF (1:1)

LSCF enhances oxygen sorbent stability for extended 
redox cycling at 850oC for 100 cycles
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Screening of low temperature oxygen 
sorbents

SrFeO3 is identified as low temperature oxygen sorbents
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Effect of A or B site doping on oxygen 
vacancy formation energy 
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Sr8Fe8O24

Doping at A or B sites can effectively lower oxygen 
vacancy formation energy



Effect of A site doping on SrFeO3-ẟ

Sample F shows 
increased oxygen 
vacancy with 
doping
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Sample A Sample B

Sample F Sample H

SrFeO3



Effect of A/B site doping on O2 capacity

A-site doping indicates 
Sample F possesses 
superior oxygen capacity
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Sample A Sample F Sample H Sample E Sample BSrFeO3

B-site doping indicates 
Sample D and sample J 
possess superior oxygen 
capacity

Sample D Sample I Sample G Sample J Sample BSrFeO3



Stability of sample D
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• Red: 2.5%H2O/Ar, 6 min; Oxi: 2.5%H2O/20%O2/Ar, 4 min; 
600oC 

• Sample D is stable for 1000 redox cycles less than 3% 
degradation
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Stability of sample D
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Less than 3% degradation of redox rate and oxygen capacity 
after 1000 cycles 
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Physical and Structural Properties
Sample D: Fresh sample Sample D: 1000 cycle tested 

sample

Sample D
Sample D

Structure of sample D remains stable after 1000 redox cycles



Cycled 1000-1700
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Redundant time for oxidation, so needed to reduce it 
to increase bed size factor

• Ran next 700 cycles
– Reduced reduction and oxidation time to optimize cycles

• 5% decrease of oxygen capacity after 1700 cycles 



Electrical Conductivity Relaxation (ECR)
measurement of sample D

• Characteristic thickness Lc = D/k = ~200 μm, within 
particle size range of 150-250 μm

• Both oxygen diffusion and surface oxygen exchange 
determines redox kinetics 24

700oC
PO2: 0.02  0.04 atm
D=3.129e-05 cm2/s
k=1.582e-03 cm/s

700oC
PO2: 0.04  0.05 atm
D=3.605e-05 cm2/s
k=1.716e-03 cm/s



Electrical Conductivity Relaxation (ECR) 
measurement of sample L

• Characteristic thickness Lc = D/k = 86-116 μm, smaller 
than particle size range of 150-250 μm

• Surface oxygen exchange limits redox kinetics
25

700oC
PO2: 0.02  0.04 atm
D=5.0113e-06 cm2/s
k=5.8047e-04 cm/s

700oC
PO2: 0.04  0.05 atm
D=4.362e-06 cm2/s
k=3.741e-04 cm/s



Stability of sample L at 450oC

• Red: Ar, 6 min; Oxi: 20%O2, 4 min; 450oC, 100 cycles 
• Oxygen production rate: 0.082% O2/min
• Bed size factor: 1693 lbs/TPD O2
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Stability of sample L at 500oC

• Red: Ar, 4 min; Oxi: 20%O2, 2 min; 500oC, 100 cycles 
• Oxygen production rate: 0.156% O2/min
• Bed size factor: 886 lbs/TPD O2 27
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Summary of “high temperature” oxygen 
sorbents

• Balanced oxidation and reduction rates improve oxygen 
capacity

• LSCF promotes metal oxide dispersion and oxygen 
transport

• LSCF increases average redox rates by 4 times and 
oxygen capacity by 2.5 times

• LSCF enhances stability of oxygen sorbents
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Summary of “low temperature” oxygen 
sorbents

• Screening of oxygen sorbents with low reduction 
temperature by The Materials Project

• Doping at A or B site of SrFeO3 increases oxygen 
vacancy 

• Highly active doped SrFeO3 with 0.5-1.0% O2 capacity 
for air separation at temperature below 600oC

• Steam resistant sample D oxygen sorbent is stable for 
1000 redox cycles
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Future work
NCSU
• Stability test (i.e., 2000 cycles) of LSCF-CF and A or B 

site doped SrFeO3 oxygen sorbents in the presence of 
steam and obtaining two or more oxygen sorbents with 
<5% degradation (Subtask 5.1, 04/01/2019-06/30/2019)

• Further optimization in oxygen capacity and redox 
kinetics of doped SrFeO3 OS (04/01/2019-12/31/2019)

• Fixed bed evaluation of LSCF-CF and doped SrFeO3
oxygen sorbents (Subtask 5.2, 07/01/2019-09/30/2019)

• Testing oxygen sorbents prepared by Thermosolv
using scaled up synthesis (Subtask 7.2, 10/01/2019-
03/31/2020)
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Future work
NCSU
• Process analysis of REM-ASU for modular coal 

gasification (Subtask 9.1, 04/01/2020-12/31/2020)
Thermosolv
• Develop a preliminary REM-ASU design with > 30% 

reduction in energy consumption based on the 
adsorber/desorber model developed by WVU under 
subtask 6.1 (Subtask 6.2, 04/01/2019-12/31/2019)

• Scaled-up production of batches (25 kg/batch) of oxygen 
sorbents with air separation performance to achieve >30% 
reduction in energy consumption comparing to cryogenic 
ASU (Subtask 7.1, 10/01/2019-03/31/2020) 31



Future work

Thermosolv
• Preparation of the Pilot Facility (Subtask 8.1, 

10/01/2019-09/30/2020)
• Pilot scale testing of the REM-ASU technology to 

achieve >95% pure O2 for over 2000 cycles with less 
than 10% decrease in oxygen storage/release capacity 
(Subtask 8.2, 10/01/2019-9/30/2020)

• Development of techno-economic models and 
commercialization plans. Identify an REM-ASU system 
design and OS material with >30% reduction in energy 
consumption comparing to cryogenic ASU (Subtask 9.2, 
04/01/2020-12/31/2020) 32



Future work

WVU
• Continue characterizing oxygen transport kinetics of 

LSCF-CF and doped SrFeO3 oxygen sorbents 
(04/01/19-12/31/19)

• Modeling of Adsorption/Desorption Operations using 
Advanced Sorbents (Subtask 6.1, 04/01/19-12/31/19)
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Market Benefits/Assessment

• REM-ASU produces low cost oxygen compatible with 
modular coal gasification 

• REM-ASU can lead to 30% reduction in energy 
consumption comparing to cryogenic method for air 
separation

• REM-ASU integrates with gasification system for low-
grade heat utilization and O2 cost reduction

• REM-ASU has lower capital cost and is easy to scale up
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Technology-to-Market Path
• Design oxygen sorbents with high O2 capacity and high 

activity for efficient air production 
• Demonstrate robust and steam resistant oxygen sorbents 

for long term air separation via pressure swing without 
using vacuum desorption

• Develop modular ASU for pilot scale testing to produce 
95% O2 over 2000 cycles with less than 10% degradation

• Integrate REM-ASU with 1-5 MW modular coal gasifier 
with >30% reduction in energy consumption for oxygen 
generation comparing to conventional ASUs. 

• Techno-Economics and commercialization plan 
development
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REM-ASU and Gasifier Integration
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REM-ASU has the potential to be efficient, flexible, and cost-effective



Conclusions

• REM-ASU has the potential to produce low cost oxygen 
via pressure swing with oxygen sorbent materials

• REM-ASU is tailored to be compatible with 1-5 MW coal 
gasifier, with the potential for >30% reduction in energy 
consumption for air separation

• Low cost oxygen reduces cost for coal gasifier 
deployment, leading to cost effective CO2 capture and 
utilization

• Future work include demonstration of robustness and 
steam resistance of oxygen sorbents for over 2000 
cycles with less than 5% degradation, scale up, and 
demonstration
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Thank you!
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