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• Objectives of Project
To develop a new class of wireless 3D nanorod composite arrays based 
high temperature surface-acoustic-wave (SAW) gas sensors for selective 
and reliable detection through machine learning algorithms

• Our Strategies
1. High-temperature stable passive wireless SAW sensor arrays
2. High-temperature stable perovskite coated three-dimensional (3D) 

metal oxide nanorod composites
3. Machine learning algorithms

Project Description and Objectives 
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• Strategic alignment of project to Fossil Energy objectives (Sensors and 
Controls)

1. The proposed high temperature sensing platform specifically provide a novel, 
feasible, and functional device well-suited for the development of in-situ and real-
time high temperature gas sensing. 

2. If successful, this approach could become a new standard for high temperature 
environmental sensing and the sensor signals can provide useful information for 
combustion control. 

3. The realization of this new class of nanorod composite array based high temperature 
gas sensors could provide an easy platform for directly adapting to wireless 
communication for remote monitoring of sensing signals, thus could bring a potential 
leap in various combustion monitoring and control devices development. 

4. With the successful demonstration of the wireless 3D nanorod composite SAW sensor 
array and the development of advanced machine learning algorithm, the proposed 
sensing platform could realize in-situ and real-time monitoring and control of 
complex combustion environments.

Project Description and Objectives 
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Background and Project Update
Environment & Energy Concerns

• Better control of combustion
• Reduction of emissions (CO, NOx, SOx, HCs) less environmental problems
• Improvement of energy efficiency             more energy savings

 Contribution from HTGS and Controls Value Derived for an Existing Coal Fired Power Plant

FUEL COSTS
$39 Million/Year 

Gaseous Emissions

Solid Wastes

POWER
3,285,000,000 kw-hr/yr 
@75% Capacity Factor

Total Fuel + O&M Budget $45 Million - Avg. 500 MW Unit (Analysis for 2000)
 1% improvement in EFFICIENCY
• $390,000 savings in fuel per year
• $4.1 million for entire installed fossil capacity

 1% REDUCTION  in 
greenhouse gases and 
solid wastes

• 11 million tons of coal
• 250 billion cubic feet of natural 
gas
• 43 million barrels of crude oil

600

DOE prediction:
Energy savings per year
0.25 quadrillion BTU
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Background and Project Update

• SAW sensor has been explored in high temperature gas detection because SAW devices 
are sensitive for discriminating any surface perturbation (chemically or physically) such 
as molecule adsorption and conductivity changes produced by chemisorption. 

• SAW devices are also inexpensive in large scale fabrication. In recent years, a range of 
high-temperature stable piezoelectric materials have been developed including langasite
(LGS), gallium phosphate (GaPO4), and aluminum nitride (AlN). 

• Among all these materials, LGS has been intensively investigated for high temperature 
SAW-based temperature sensor because it does not undergo a phase transition up to its 
meting temperature at 1470 °C and the LGS-based SAW device has been operated at 
800 °C for more than 5.5 months, showing very good stability.

Why surface-acoustic-wave (SAW) gas sensor?
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Background and Project Update

Why surface-acoustic-wave (SAW) gas sensor? (Cont’d)
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Simulated insertion loss vs. frequency spectra obtained for a LGS SAW sensor enhanced with ZnO or CeO2 nanorods. Left inset 
shows the SAW traveling near the active surface and close views of nanorods. Right inset shows the peak region of the spectra.
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Background and Project Update

• Vapor-phase-transport method and sol-gel method have been developed to synthesize 
3D metal oxide nanostructures, their application to large scale production of 3D arrays 
are greatly limited due to the low reproducibility, high-cost, and/or complicated 
procedures. 

• Hydrothermal method has emerged lately as an alternative for large-scale, cost-effective 
and reproducible production of 3D nanostructures. 

• Many 3D metal oxide nanorods have been synthesized using hydrothermal method by 
our group and other groups, such as CeO2, ZnO, SnO2, TiO2, etc. 

• Our team has demonstrated that the 3D metal oxide nanorods can serve as scaffolds for 
subsequent highly stable perovskite nanoshell coating, thus generating 3D 
nanocomposites with super high-temperature stability and/or gas selectivity.

Why hydrothermal method to prepare 3D metal oxide nanomaterials?  
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Background and Project Update

Why hydrothermal method to prepare 3D metal oxide nanorod arrays? (Cont’d) 

Ga2O3

ZnO

TiO2 CeO2
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Background and Project Update
Why hydrothermal method to prepare 3D metal oxide nanorod arrays, followed by 
perovskite coating?  

a) and b) are respectively a typical SEM image of ZnO/LSCO heterostructured nanorods before and after 
24-hour 800 oC thermal aging experiment. c) is a set of comparative XRD spectra scanned for the 
ZnO/LSCO heterostructured nanorod arrays after 24 hours’ thermal aging at temperatures up to 800 oC.
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Background and Project Update

• A sensor array could provide a specific and unique response patterns (fingerprints) for different 
individual chemical species or mixtures of species. 

• With subsequent data analysis, the gas sensor array could be used to qualitatively identify gas 
species using pattern recognition approaches and quantitatively determine gas composition based 
on learning and regression methods.

• We can think of a learner as an entity that tries to guess a concept or function. Let this function be 
f(x1, x2, …, xn) where x1, x2, …, xn are the underlying variables. A learner is supplied with 
examples. An example is nothing but a specific assignment of values to the variables and the 
corresponding value of the function. 

• After having seen a sufficient number of examples, the learner comes up with an estimate of the 
function. In general the estimate may not be the same as f but possibly a close approximation to f.

Why machine learning algorithms for improved identification of target species 
and concentration? 
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Background and Project Update
Why machine learning algorithms for improved identification of target species and 
concentration? 

A case study using a simple algorithm: The comparison of sensor array response input of a) 50 ppm CO and 30 ppm CH4, d) 
150 ppm CO and 30 ppm C3H8. The output of gas identification program for b) 50 ppm CO, c) 30 ppm CH4, e) 150 ppm CO 
and f) 30 ppm C3H8, respectively.

Gas Type CO CH4 C3H8

Real Conc./ppm 50 80 100 150 30 50 80 100 30 50 80 100

Predicted Conc./ppm 54 72 104 149 30 51 77 101 32 45 81 100

Gas concentration predicted by gas identification program
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1. High-temperature stable passive wireless SAW sensor arrays
2. High-temperature stable perovskite coated three-dimensional (3D) 

metal oxide nanorod composites
3. Machine learning algorithms

Our Proposed Main Activities
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Background and Project Update
1. Design, fabrication, and characterization of a passive wireless SAW arrays on LGS substrate

• The bilayer stack including LOR resist beneath 
Shipley S1805 photoresist for metal lift-off 
processing

• Compared to using Shipley photoresist alone, LOR 
(Lift-Off Resist) creates a sufficient gap between 
the metal areas to ensure a good lift-off → The 
metal on the surface of the wafer must not 
connect the metal on the top of the resist

* Minimum feature size: 2 μm The general lift-off process (positive)

S1805

LOR resist

Substrate

Photomask

Deposited metal
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Background and Project Update
1. Design, fabrication, and characterization of a passive wireless SAW arrays on LGS substrate

• SAW circuits with 
designed feature 
size of 2 µm were 
fabricated on LGS 
wafer.
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Background and Project Update
1. Design, fabrication, and characterization of a passive wireless SAW arrays on LGS substrate

After thermal treatment (4 hrs at 
800 °C under air atmosphere)

Before thermal treatment

2.63 µm

1.37 µm
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Background and Project Update
1. Design, fabrication, and characterization of a passive wireless SAW arrays on LGS substrate

Deposit the 2nd photoresist layer using maskless alinger to only expose the sensing area to the
environment for selective growth of 3D nanowires.
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Background and Project Update
2. In-situ hydrothermal growth of 3D metal oxide nanorods on the active sensing area of SAW 
sensors followed by perovskite nanosheath coating
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Background and Project Update
2. In-situ hydrothermal growth of 3D metal oxide nanorods on the active sensing area of SAW 
sensors followed by perovskite nanosheath coating (cont’d)

LSMO on ZnO nanorods

LSCO on ZnO nanorods

Thermally stable perovskite could help stabilize metal oxide nanorods such 
as ZnO, allow them to work at higher temperature than them alone.
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Background and Project Update
2. In-situ hydrothermal growth of 3D metal oxide nanorods on the active sensing area of SAW 
sensors followed by perovskite nanosheath coating (cont’d)

Selective growth of metal oxides on the sensing area
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Background and Project Update
2. In-situ hydrothermal growth of 3D metal oxide nanorods on the active sensing area of SAW 
sensors followed by perovskite nanosheath coating (cont’d)

1.5 µm (vs. 0.5 µm in previous study) 
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Background and Project Update
3. Drop-casting method used for selective deposition of metal oxides on the sensing area

NH3-selective MoO3 nanoribbons

Kwak, et al. ACS Appl. Mater. Inter. 2019.
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Background and Project Update
3. Drop-casting method used for selective deposition of metal oxides on the sensing area

NH3-selective MoO3 nanoribbons

Kwak, et al. ACS Appl. Mater. Inter. 2019.

Density functional theory 
(DFT) simulations with 
Hubbard U and Van der 
Walls correction were 
employed to understand 
the adsorption of gas 
molecules on the 𝛼𝛼-
MoO3 (010) surface and 
the corresponding 
alternations in electronic 
structures. 
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Background and Project Update
3. Drop-casting method used for selective deposition of metal oxides on the sensing area
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Background and Project Update
4. SAW sensor experiment setup

Resonant frequency change of the 
drop-cast MoO3 based LGS SAW 
sensor as a function of temperature

1st generation 
of test stage
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Background and Project Update
4. SAW sensor experiment setup

Resonant frequency change of the drop-
cast ZnO nanorod based LGS SAW 
sensor as a function of temperature
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Background and Project Update
4. SAW sensor experiment setup

2nd generation 
of test stage
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Background and Project Update
4. SAW sensor experiment setup

The experiment 
set-up for SAW 
oscillator circuit
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Background and Project Update

• Given large amount of field data, we could apply machine learning tasks for classification and 
regression problems. The latent feature behind the observation is difficult for human to extract, 
but the machine learning algorithms could identify those features via a variety of ways, e.g. space 
transform, de-noising, etc.

• Deep learning is also brought as a even more powerful tool, by taking advantage of neural network 
(NN) structures. Universal approximation theorem tells us a even single layer NN could 
approximate any smooth functions to arbitrary precision. Several types of NN are used in different 
areas, and some of them already achieves an accuracy of classification tasks higher than human 
beings.

5. Development of machine learning algorithms
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Background and Project Update
5. Development of machine learning algorithms

The loop involves the training step if data and label are given. In the production phase, online learning 
algorithms can also be used for further training and refining each model.
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Background and Project Update
5. Development of machine learning algorithms

Different types of gases have their unique sensor response profile, the response amplitude and the
response speed. Thus very different shapes of sensor response could be drawn for different types of gases.
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Background and Project Update
5. Development of machine learning algorithms

Convolutional neural network (CNN) used to predict the gas species
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Background and Project Update
5. Development of machine learning algorithms

• Convolutional neural network (CNN) is more powerful than multi layer 
perception (MLP) but need more data input.

• Testing a simple version MLP due to limit data we have. 
• MLP (50, 30, 20): 3 layers with 50, 30, 20 neurons in each layer, respectively. 
• Using the sensing data from our previous CO, CH4 and C3H8 detection.
• Splitting data 4:1 for training and testing.  

SVM: support vector machine
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Background and Project Update
5. Development of machine learning algorithms

• Gaussian Process Regression (GPR) used to predict the concentration.

The regression model tries to learn a surface that smoothly cover the training data points.
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Remaining Technological challenges
• Unstable frequency signal when operating under the configuration of SAW oscillatory 

circuit: We are making the new mask with bigger feature size (10 µm vs. 2 µm) –
generating better signal.

Preparing Project for Next Steps
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Market Benefits/Assessment
• Operating temperature >350 °C (e.g., 600 to 1000 °C) 
• Stable sensing composites in the operating temperature range
• Passive and/or wireless sensing
• High sensitivity for various gases
• Identification of gas concentration and species in complicated combustion 

environment through machine learning

Technology-to-Market Path
• Build SAW oscillator circuit with stable frequency output using SAW device with larger 

feature size. 
• Sensing test in NH3, NO2, CH4 and O2 at high temperature. 
• Sensor stability test
• Identify industry collaborator with expertise in SAW oscillator design. 

Preparing Project for Next Steps
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• SAW device was fabricated on Langasite (LGS) wafer and Quartz.
• A second layer of photoresist was successfully deposited on SAW sensor to only expose 

the sensing area for selective decoration of sensing materials.
• Vertically aligned ZnO nanorods array were selectively and successfully grown on the 

sensing area through hydrothermal method, followed by removal of the 2nd photoresist 
layer using acetone.

• After hydrothermal growth and removal of the 2nd photoresist layer, some delamination 
of SAW circuit was observed. Drop-casting can solve this issue.

• SAW oscillator was developed for real-time monitoring. However, unstable frequency 
issue was encountered, which will be addressed using SAW circuit with larger feature size.

• Machine learning algorithms were developed. 
• Also 5 Ph.D. students (Tony Kwak, Qiuchen Dong, Mingwan Zhang, Bo Zhang, and Xinyu

Cai) are trained and involved in this project.

Concluding Remarks
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