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IN-SITU OPTICAL MONITORING OF GAS TURBINE BLADE COATINGS
UNDER OPERATIONAL EXTREME ENVIRONMENTS

Overall Goals

Develop and demonstrate at the laboratory scale an
advanced optical suite of instrumentation technologies for
enhanced monitoring of gas turbine thermal barrier
coatings (TBCs).

Specific goals are to improve the accuracy and
effectiveness of temperature and strain measurements
made on high temperature gas turbine blades.




Project Objectives

* Achieve intelligent sensing that leverages intrinsic properties of coatings and dopants through
optical emission and absorption characteristics while ensuring coating integrity and durability goals
are concurrently met.

e Achieve accurate diagnostics of turbine blade coatings under operating environments through
calibration and correlation of measurements with direct and indirect parameters.

e Achieve advances in benchmarked optical measurement technologies of infrared imaging (IR)
measurements and digital image correlation (DIC) in existing laboratory replicated environments.

Project Tasks

Task 1: Project Management & Planning

Task 2: Define and manufacture sensor configuration

Task 3: Establish Sensing Properties and Characterize Coating Response for Luminescence Based Sensor
Task 4: Perform Non-Intrusive Benchmarking Measurements of Surface Temperature and Strain

Task 5: Develop and Test Laboratory Scale Sensor Instrumentation Package
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Background and motivation

Modeling phosphor luminescence for phosphor thermometry

Coating characterization by synchrotron XRD measurements

Instrumentation for phosphor thermometry and initial measurements

Summary and Future work
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Background - Thermal Barrier Coatings (TBCs)

= Thermal barrier coatings (TBCs) used to _

Thermal Barrier
protect metal substrates from extreme Compressor Combustor Coating
temperatures (1300 - 1600°C). '

» Temperature gradients: Temp decreased
by = 150°C across the top coat.

= TBC structure:

Top coat YSZ
TGO Alumina
Bond coat NiCoCrAlY, Pt-aluminide
Substrate | Inconel, SX-superalloys _ High-Pressure
©Siemens Turbine

& Coated Blade
= Major applications:
= Power generation engines,
Aeroengines

Cutaway view of a power generation SGT-800 industrial
gas turbine [©Siemens] and a scanning electron
microscope (SEM) image of a cross-section of a TBC

Gas turbine systems work under the

Brayton cycle: 1

Bl Temp Ratio

n=1



Temperature sensing TBCs for Phosphor Thermometry

m Embedded doped layer in a TBC enables temperature measurement “beneath the coating”
m Typical dopants are rare-earth elements (Dy, Eu, Er, etc.)

m The time dependent intensity is measured following the excitation pulse to determine the
temperature dependent decay constant 7(T).
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Task 2: Define and manufacture sensor configuration

Modeling Luminescence of Rare earth doped
TBC configurations for Phosphor Thermometry
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Modeling Luminescence
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MOdeling Luminescence Top coat Bond coat

Four-flux Kubelka-Munk model Lo (0) = Iy ——] 1, = ol
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Material A(nm) | scattering coefficient s (m™ 1) absorption coefficient k (m™")
Exciration properties
YSZ:Dy 355 50866 511
YSZ:Er/ YSZ:Sm 532 33026 111
Emission properties
YSZ:Dy 590 29585 95
YSZ:Er 545 32113 107
YSZ:Sm 619 28490 88
Input properties (Stuke, 2012) 10

A. Stuke, Int. J. Appl. Ceram. Technol. 9: 561-574, 2012



Modeling Luminescence Intensities — Results of Kubelka-Munk model

O Doped top coat
O Undoped top coat
0 Bond coat
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Decay time of luminescence in TBC configurations
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Temperature gradient
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Decay time of the luminescence depends on position due to gradients in temperature.
Decay time of collectable luminescence is contribution of luminescence from different positions

into the doped layer.
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Decay time of luminescence in TBC configurations
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Luminescence decay behavior in doped TBC configurations
Extension of Kubelka-Munk model - Results

= - = ~ £ )
£ =)
£ 250 082 5250 2 3 <
— —~ c >
& 200 Z 5 200 2 8 =
= B = @ =
7 150 06 & ' 150 c @ S
o 2 0 & o =
& 100 £ 2o E 2 £
D Q
2 04 5 o = ° =
g 90 T w 90 g © ';E
2 5 2 A 0
3 0 @ 3 0 @ = @
w 250 ° 250 3 °
200 g u s “ S
Oslf
/o,
"
f”l;; 0 0 Thickness (um)
YSZ:Dy 'E
N 5 250 -
* The position of Z 20[’}ce

measurement and dec& cor

show for three materials'g 150

= 100 -

e The configurations carf be

tallorlng the geometry gnaﬁ%é

for optimal performan@ fwrl!
=3

Thermometry w 250

Toq (MS)

200

e The model can help po@,%sigﬂ% 50 ¢
configurations suitable for tempgfhw,t;)e
measurements J

_ 0
ysz:50 YSZ:Er YSZ:Sm 0 YSZ:Dy YSZ:Er YSZ:Sm

0 o A
Thickness (pm) Fouliard et al. (2019) Applied Optics (Accepted) *



Model provides the expected emissivity spectra of EB-PVD YSZ TBC

Varying wavelength: distribution of intensities
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Defining sensor configurations

(thicknesses are in um)
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150

<+—>

Compositions

YSZ 8% at. Y,0;, 92% at. Zr,0;
YSZ:Er 98.5% at. YSZ, 1.5% at. Er,0,4
GAP:Cr 99.8% at. GdAIO, , 0.2% at. Cr,0,

Number of specimens
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Coupon dimensions

25.6mm ¢ x 3mm (height)

Ref samples must use same spray parameters
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Task 3: Establish Sensing Properties and Characterize Coating Response for Luminescence Based Sensor

Synchrotron Characterization of TBC
configurations with Rare Earth dopants



TBCs by Air Plasma Spray (APS)

Parameter Spray distance (cm) Current (A) Voltage (V) Ar (SLM) He (SLM)
Value 10 900 43.9 54 44

Undoped YSZ ‘ Undoped YSZ \ Undoped YSZ
YSZ:Eu

Configuration Layer Thickness Hardness Porosity
Regular (C) BC 312 + 33 pm 711.47 £ 268.80
TC 330 + 22 um 1037.89 + 358.30  5.76 %
BC 329 + 29 um 682.98 + 125.10
Doped layer at bottom (B)  TC-YSZ+YSZ:Eu 75 £ 12 pm 1220.30 + 344.32  12.23 %
TC-YSZ 247 £+ 18 um 1013.84 + 323.45 9.22 %
BC 323.60 £+ 27.21 pm  670.07 £ 150.56
Doped layer at top (T) TC - YSZ 346 £+ 25 um 848.83 + 64.21 6.36 %
TC - YSZ+YSZ:Eu 75 + 12 pm 996.07 + 272.84  12.07 %

Doped layer: Mixture YSZ+YSZ:Eu
[2:1 wt%]

Sprayable YSZ acts as a carrier
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Synchrotron experiments for coating charactéfization |
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: :
XRD results — Residual strain Undoped Y52 Pt Undoped Y52
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e The YSZ layer is found to be under in-plane
tensile strain (e,,)

e The strains are in the order of 10 that is close to
experimental limit

e Overall mechanical integrity is not harmed by the
multi-layered configuration
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Coefficient of Thermal Expansion (CTE) of top coat

Expansion of lattice constant d YSZ: EU
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e The CTE increases with temperature Teme {°C)

e The values of CTE are similar to reported values in literature

 The TBC configuration does not alter the thermal expansion behavior
Havashi et al. Solid State lonics. 176(5-6). 2005



Task 5: Develop and Test Laboratory Scale Sensor Instrumentation Package

Instrumentation for Phosphor Thermometry



Instrumentation for luminescence decay method

O Low power Pulsed-laser:

> Nd:YAG laser: 355 nm / 532 nm

uawiads

» 1 mJ pulse energy, 10 ns
excitation, 10 Hz

0 Fast PMT:
» Neutral density filter and

Heater

bandpass filters

» Combination of PMTs is under

development for synchronized
. PMT
decay fitting Dichroic Laser mirror
. /illter
O Data acquisition system using NDF + Laser
Bandpass mirror
LabVIEW Lens
Laser pulse output es= f=150mm

Pulsed laser source
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Experiments with Al,O; samples

o
Al [e] at 306 C Al (0] at 201 C
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* Initial measurements using a Al,O; sample was performed
 Temperature was recorded using a K type thermocouple

o T Seat and Sharp, IEEE Tran. on Instr
 The decay constants are similar to those reported in literature

and Meas, 53.1 (2004): 140-154.



Summary and Conclusions

Task 2 - Modeling

e A modeling framework was developed to predict the luminescence behavior for Phosphor
Thermometry considering different TBC configurations and dopants

 The model provides insight to tailor the doped TBC configuration for phosphor thermometry

e The model can be applied to study the microstructures of TBC (e.g. graded TBC), emissivity of the
coating,

Task 3 - Coating characterization

* Eu doped TBC coupons have been fabricated by APS method

 The TBC coupons were characterized by high energy XRD at synchrotron

 The in-plane tensile residual strain was measured that resulted due to tensile quenching

e It was observed that over mechanical integrity and residual strain distribution was not altered due to
doped layer

Task 4 — Benchmark measurements

* Instrumentation for Digital Image Correlation (DIC) at high temp

e IR thermometry for temperature measurements

Task 5 — Instrumentation for Temperature measurement by Phosphor Thermometry
e Instrumentation for the Phosphor Thermometry has been developed
* Initial temperature measurements of Al,O; using the Instrument have been presented



Future Work

Task -3
 Characterization of the effectiveness of sensing TBCs (YSZ:Er & GAP:Cr) by Phosphor
Thermometry and verification of the mechanical integrity using transmission XRD.

Task -4

e Benchmark measurements:
* IR thermometry considering tailoring the emissivity of the coating
e DIC for benchmark measurements for strain measurements

Task -5

* Laboratory scale sensor Instrumentation:
 Temperature measurements at high temperature with doped TBC coupons
* Further improvements in the Phosphor Thermometry instrument



Publications

Q. Fouliard, S. Haldar, R. Ghosh, S. Raghavan (2019) Modeling Luminescence Behavior for Phosphor
Thermometry Applied to Doped Thermal Barrier Coating Configurations, Accepted in Applied Optics

e P. Warren, S. Haldar, S. Raghavan, R. Ghosh (2019) Modeling Thermally Grown Oxides in Thermal
Barrier Coatings using Fractal Patterns, Accepted in ASME Turbo Expo 2019, , Phoenix, AZ

e S. Haldar, P.Warren, Q. Fouliard, D. Moreno, M. McCay, J.S. Park, P. Kenesei, J. Almer, R. Ghosh, S.
Raghavan (2019) Synchrotron XRD Measurements of Thermal Barrier Coating Configurations with
Rare Earth Elements for Phosphor Thermometry, Accepted in ASME Turbo Expo 2019, Phoenix, AZ

e Q. Fouliard, S.A. Jahan, L. Rossmann, P. Warren, R. Ghosh, S. Raghavan (2018) Configurations for
Temperature Sensing of Thermal Barrier Coatings”, /International Conference on Phosphor
Thermometry, 25-27 July, 2018, Glasgow, UK
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