

HIGH TEMPERATURE GAS SENSOR FOR COAL COMBUSTION SYSTEM

Yi Wang, Liang Ma, Wenyuan Li, Xingbo Liu* West Virginia University

Eric Brosha, Cortney Kreller, Mukund Mukundan Los Alamos National Laboratories

Michael Carter, Bennett Meulendyk, Mel Finkdlay KWJ Engineering

> Chad Hufnagel Longview Power

> > April 11, 2019

OUTLINE

- Background & Scientific Approaches
- Project Objectives
- Project Team
- Planned Tasks & Milestones
- Research & Development Progress
- Summary

Furnace	Coal flow	Electrostatic or microwave-based			
	Combustion air flow	Pitot tubes, Venturis, thermal mass flow meter			
	Temperature	Thermocouple, IR or acoustic pyrometry, TDLAS			
	Oxygen	Electrochemical cell, paramagnetic			
	со	NDIR, catalytic bead, TDLAS			
	Presence/quality of flame	UV/vis/IR detector, optical imaging			
	Heat flux	Heat flux sensors (thermocouple or RTD-based)			
Environment	NO and NO	CLD, UV shots material shorts shorts and short			
monitoring and pollutant control	NO and NO ₂	CLD, UV photometry, electrochemical cell			
	SO ₂	NDIR, UV photometer, FTIR			
	Hydrocarbons	Flame ionisation detector			
	со	NDIR, catalytic bead			
	Particulates	Optical opacity			
	NH3 slip	UV photometry, diode laser/mid-IR absorption			
	H ₂ /CO ₂ /CH ₄	Thermal conductivity detector			
	Limestone slurry pH	Electrochemical			
	Mercury	UV absorption			
	Carbon-in-ash	Microwave-based			

The variation of key combustion parameters with air/fuel ratio

CO2 or NOx sensing?

Rate of change of CO₂ is rather small at the point of optimum excess air.

CO₂ is not a very sensitive measurement.

NO₂ and NO give opposite signal to mixed-potential type sensors

CO sensing

CO is a direct measure of the completeness of combustion , unaffected by air infiltration.

Maximum boiler efficiency when the CO is between 100 and 400 ppm.

CO is a very sensitive indicator of improperly adjusted burners.

O₂ sensing?

It uses the probe should be installed close to the combustion Zone

The flow should be turbulent probe cannot distinguish leakage from excess oxygen left over after combustion.

A relatively insensitive measurement.

GC/MS, Infrared spectroscopy, Chemiluminescent etc.

SiC-base (Schottky diode) sensors - Silide formation

Physical properties based sensing (mass, dielectric constant, temp, surface stress etc.)

Electro-Chemical Sensors Potentiometric Amperometric

Nicholas F. Szabo, Prabir K. Dutta: Correlation of sensing behavior of mixed potential sensors with chemical and electrochemical properties of electrodes, Solid State Ionics 171 (2004) 183–190

Requirements

In situ, online sensors

Accurate

Robust

Low cost

Miniature and easy for deployment

Challenges

High temperature

Corrosive conditions

Poisoning gases

Local disturbance

PROJECT OBJECTIVES

- To develop an accurate, robust, high temperature oxygen sensor based on refractory, reliable, catalytically inactive materials capable of monitoring combustion in a coal-fired plant in real time to improve combustion performance;
- (2) To investigate the feasibility and sensitivity of a new catalytic/non-catalytic sensor design to detect "oxidizable" target gases at high temperatures where other electrochemical sensors have failed;
- (3) To integrate and test the basic components of the proposed sensor in a commercial, 700 MW power plant consistent with TRL-5.

West Virginia University -

- In-depth understanding/modeling of electrochemical reaction more accurate, better prediction & sensor material selection
- Characterization of electrochemical kinetics toward oxygen and target gas reactions.
- Testing in lab- and industrial environments

Los Alamos National Lab: Experimental Development of Hightemperature Sensor

KWJ Engineering – High Temperature Sensor Packaging

Longview Power – Testing site for the High Temperature Gas Sensor

Project Team Member – Longview Power

Location	Monongalia County, near Maidsville, WV					
Status	Operational					
Commission date	2011					
Owner(s)	Longview Power					
Thermal power station						
Primary fuel	Coal and natural gas					
Туре	Steam turbine					
Power generation						
Nameplate capacity	700 MW					

- Officially a "zero discharge" power plant in WV
- Includes a new air pollution control system that results in emissions that are Among the lowest in the nation for coal plants.
- Emits less CO₂ than most other coal plants because of its <u>fuel efficiency</u>

PLANNED TASKS & MILESTONES

I.D.	Task								
		Q1	Q2	Q3	Q4	Q5	Q6	Q7	Q8
1.0	Project Management								
2.0	Sensor Development								
3.0	Sensor Packaging								
4.0	Lab-scale Sensor Testing								
5.0	Post-mortem Characterization								
6.0	Electrochemical Mechanisms Investigation								
7.0	Sensor Testing in Utility Boiler								

- Task 1.0Quarterly, annual, and final reports
- Task 2.0 High temperature gas sensor with the temperature capability up to 1300°C
- Task 3.0 Packaging for the sensor developed by LANL in Task 2
- Task 4.0 Library of performance matrix for the sensor in lab-scale power plant simulator
- Task 5.0 Microstructures of high temperature gas sensor after lab-scale testing
- **Task 6.0** Verification of the electrochemical mechanisms of high temperature gas sensing on maximum reading and temperature-proportional signal.
- **Task 7.0** Library of performance matrix for the sensor in utility boiler & microstructures of high temperature gas sensor after testing

DECISION POINTS:

- 1.Q1 Finish PMP
- 2.Q3 Sensing ability (lab) <=800ppm CO concentration in a Po_2 range of 0.5-2% @ 1000C 3.Q7 Sensing ability (lab) <=400 ppm CO concentration in a Po_2 range of 1-3% @ 1000 C

Current Mixed Potential Sensors

oxidation

Fernando H. Garzon, Rangachary Mukundan, Eric L. Brosha: Solid-state mixed potential gas sensors: theory, experiments and challenges, Solid State Ionics 136-137 (2000) 633-638

Determine reducing gas composition in a background of oxygen Working principle

(1)

(2)

(3)

 $O'_{2} + 4e^{-} \Leftrightarrow 2O^{=}$ $CO' + O^{=} \Leftrightarrow CO'_{2} + 2e^{-}$ $CO' + \frac{1}{2}O_{2} \Leftrightarrow CO'_{2}$

Current Mixed-potential sensors

- Mixed potential sensors
- $T_{op} < 600 \text{ °C}$
- High sensitivity to CO/HCs/NOx
- High durability
- Dense electrodes/Porous electrolyte•

- CO electrochemical oxidation
- CO heterogeneous oxidation

Proposed HT sensors

- Oxygen (Free vs Equilibrium)
- T_{op} up to 1500 °C
- Higher sensitivity as $T \uparrow$ and $P_{O2} \lor$
- High durability
 - One dense and one porous electrode

▓

One-chamber design

EST.1943

One-chamber design sensor

Two-chamber design

72 Sensing 2 - Ref 1000 °C 70 Voltage / mV $P_{02} = 2.1\%$ 1000 ppm 890 ppm 400 ppm 800 ppm 400 ppm 200 ppm 200 ppm 100 ppm 100 ppm_0 ppm 0 ppm 64 62 Time / s 500 1000 1500 2500 3000 3500 4000 4500 0

Two-chamber design sensor

- Sensing side:
 - CO/N_{2 Bal.} || N₂ || air •
 - 200 sccm_{Total}
- Ref side:
 - Air
 - 100 sccm

Two-chamber design sensor Sensing 1 - Ref 62 Щ. 60 h. Minit Voltage / mV 1000 ppm 800 ppm 400 ppm White 800 ppm 200 ppm 400 ppm 100 ppm 200 ppm 0 ppm Mill 100 ppm 54 MAN 0 ppm_ 雦 52 50 Time / s 0 500 1000 1500 2500 3000 3500 4000 4500

N

– 1000 °C

- Sensing side:

- CO/N_{2 Bal.} || N₂ || air
- 200 sccm_{Total}
- P_{O2} = 2.1%
- Ref side:
 - Air
 - 100 sccm

– 1000 °C

- Sensing side:
 - CO/N_{2 Bal.} || N₂ || air
 - 200 sccm_{Total}
 - P_{O2} = 2.1%
- Ref side:
 - Air
 - 100 sccm

SUMMARY & FUTURE WORK

Major Progress To-Date

- Two complementary approaches have been developed
- Clearly met the 1st Go/No-Go Target

Future Work

- Continue R&D to meet the 2nd Go/No-Go Target
- Mechanisms Investigations
- Packaging Development
- Prepare for Installation in Longview Boiler

Financial Support from DoE-NETL (DE-FE31564) Technology Manager – Dr. Briggs White Project Managers – Dr. Sydni Credle, Dr. Barbara Carney

