Crosscutting Research Session A8: Monitoring and Controls April 11, 2019

Advanced Controls and System Identification

David Tucker, NETL Farida Harun, NETL Larry Shadle, NETL Nana Zhou, NETL Dan Maloney, NETL Dan Oryshchyn, NETL Natarianto Indrawan, NETL Hao Chen, NETL (Chongqing)

Solutions for Today | Options for Tomorrow

Mark Bryden, Ames Laboratory Paolo Pezzini, Ames Laboratory Harry Bonilla, Ames Laboratory Peter Finzel, Ames Laboratory

Comas Haynes, Georgia Tech José Colon, Georgia Tech Jesus Arias, Georgia Tech

Hyper Gang

Controls, Models, and System Identification

NATIONAL **Dynamic Control (Distributed PID)** ERG TECHNOLOGY ORATORY Controller **Process** Controller **Set Point** Output Output System ation Stable at a stating single state 1st Order **Higher Order** Gain Linear Tuning 1.5 ω_n^2 0.5 $s^2+2\zeta\omega_ns+\omega_n^2$ -0.5 -1 (Transfer function model) -1.5 -Turbine Speed -Cathode Flow -HA Valve -PT_180_CW

System Identification

NATIONAL

ERGY TECHNOLOGY

Online System Identification

Continuously Adaptive Gain Scheduling

Online System Identification

Continuously Adaptive Gain Scheduling

Coupling and Non-Linear Interactions

Model-Free Control (Agent-Based)

- Model-free design
- Reconfigurable on different power plants
- Multi-agents emulate intelligent control
- Agents can coordinate their behavior

Airflow and Turbine Speed Control

Load Following Control

Nominal condition:

- Fuel cell thermal heat drives the gas turbine
- · Closed valves position to maximize system efficiency
- Valve opening during transient operation

JATIONAL

Load Following Control

Cyber-Physical Systems

4. don't exist...yet

Technology Development

Technology Development

Example: TES in Hybrids for Load Following

Percent Interconnect Mass of Fuel Cell (%)

Higher system efficiency and load following without risk to the fuel cell

Properties of SS441 Interconnect Material

Sensor Fusion in Agent-Based Stigmergy

Future Steps:

- Multiple sensors in one agent to control unobservable or slow responding parameters.
- > Multiple sensors coordinated by supervisory control.
- Accelerate the response of the MISO turbine speed control by modifying the probability of action and block size. Currently, we have achieved 2kW/s (4%/s) in the Hyper facility, but 4kW/s (8%/s) would be required to eliminate a battery in an islanded microgrid based on NETL's power usage.

Advanced Controls will Change the World!!!

Thank You

David Tucker U.S. Department of Energy National Energy Technology Laboratory Morgantown, WV 26507-0880 David.Tucker@netl.doe.gov

