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Effluent water from coal-fired power plants are 
regulated by U.S. EPA

• September 30, 2015, EPA finalized a rule revising 
the regulations for the Steam Electric Power 
Generating Effluent Guidelines

• Sources of effluent streams include:
◦ Fly & Bottom Ash

◦ Flue Gas Desulfurization (FGD)

◦ Ash Pond

◦ Flue Gas Mercury Control Water

• 5 regulated species

As, Cl (TDS), Hg, NO2&3, Se

https://www.epa.gov/eg/steam-electric-power-generating-effluent-guidelines-2015-final-rule

https://www.epa.gov/eg/steam-electric-power-generating-effluent-guidelines
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• ELGs regulate arsenic, TDS, mercury, and 
selenium from ZLD

• Wastewater slip stream to maintain low Cl 
concentration in FGD slurry

• Composition is highly variable and depends on 
source coal and air pollution control devices 
installed

• ELGs provide two compliance pathways:
• Chemical precipitation and biological treatment

• Zero Liquid Discharge (ZLD)

Flue gas desulfurization (FGD) wastewater has a 
complex array of constituents

Gingerich, Grol, and Mauter Env. Sci:  Water Res & Technol, 2018
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Patent Application 16N-10 (US patent #: 15/782315)
Stable Immobilized Amine Sorbents for REE and Heavy Metals Recovery from Liquid 
Sources

• Existing licensing agreement with 

PQ cooperation for:

-Pb and As

• Potential new licensing agreement 

under discussion PQ for: 

-Se, Hg, Cd and Cr
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• Sorbents are made from 
inexpensive feedstock 
materials (silica, 
polyamines) using a low-
cost production method 
(Pan Drying)

• Sorbents can be tailored 
for individual 
applications
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FGD Water Flow-Through Performance
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• Conventional technologies 
include:
• softening for hardness 

removal 
• MVC for ZLD

• Emerging technologies include 
membrane processes (RO, FO, 
MD) and electrocoagulation

• High recovery will minimize 
concentrate disposal costs

Synergies with other current and future plant water 
treatment requirements

E.g. recirculating cooling water  blowdown is 
high in silica, hardness, TDS, bacteria
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Grand challenge for concentrating effluent streams

Salinity, g/L
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Project Objective: Reduce cost of concentrating 
effluent streams by 50% compared with MVR

Salinity, g/L
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Recovery in RO is limited by membrane burst pressure

Concentrated

Waste

Feed Product

water

Reverse osmosis

Net
Diving

Force

Operating 
pressure
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Concentrated

Waste

High salinity 

brine

Diluted

Sweep

Sweep

Osmotically Assisted Reverse Osmosis

(OARO)

Net

Driving

Force

OARO uses a saline sweep to reduce the pressure 
difference across membrane

10
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Concentrated

Waste

High salinity 
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Modeling OARO process performance

Water and salt flux:

𝐽𝑤 = 𝐴 ∙ Δ𝑃 − Δ𝜋 = 𝐴 ∙ Δ𝑃 − 𝜋 𝐶𝑓𝑚 + 𝜋 𝐶𝑠𝑚
𝐽𝑠 = 𝐵 ∙ Δ𝐶 = 𝐵 ∙ 𝐶𝑓𝑚 − 𝐶𝑠𝑚

Concentration polarization:

𝐶𝑓𝑚 = 𝐶𝑓𝑏 ∙ exp
𝐽𝑤

𝑘𝑓
+
𝐽𝑠

𝐽𝑤
∙ 1 − exp

𝐽𝑤

𝑘𝑓

𝐶𝑠𝑚 = 𝐶𝑠𝑏 ∙ exp −𝐽𝑤
1

𝑘𝑠
+
𝑆

𝐷

+
𝐽𝑠

𝐽𝑤
∙ 1 − exp −𝐽𝑤

1

𝑘𝑠
+

𝑆

𝐷

Notation:
𝐽𝑤 – water flux
𝐽𝑠 – salt flux
𝐴 – water permeability coef.
𝐵 – solute permeability coef.
𝑃 – hydraulic pressure
𝜋 – osmotic pressure

𝐶 – solute conc.
𝐶𝑚 – interfacial conc.
𝐶𝑏 – bulk conc.
𝑘 – mass transfer coef.
𝑆 – structural parameter
𝐷 – diffusion coeff. of solute

A,B

Skf

ks
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OARO is cost competitive across a range of water 
qualities/recovery targets

1

2

3

Bartholomew et al. Environ. Sci. Technol., 2018

Wenzlick et al. URTC, 2018
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Sensitivity analysis can guide future OARO research

<10%

Doubled

15-25%

Halved

35-40%

+20 bar

• Doubling the water permeability reduces 
cost by less than 10%

• Halving the structural parameter reduces 
cost by 15-25%

• Increasing the maximum applied pressure 
reduces cost by 35-40%
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Experimental work characterizes membranes at 
OARO conditions

• Estimate A, B, and S for a range of 
feed pressures, and feed and 
sweep solute concentrations
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Estimating water permeability at varying operating conditions

16Zhang, et al. J. Membr. Sci. 498 (2016) 365-373

  ( ) ( )  ms,mf,sfw cπcπPPAJ −−−=

• Permeability decreases 

with average salinity

• Possible dehydration of 

CTA membrane surface

• No major effect of 

pressure

• Further tests to 

determine how salinity 

changes membrane
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Estimating structure parameter at varying operating conditions

• Possible compression of  
support layer and spacers 
with pressure

• Expected value from 
literature around 150-300 
microns

• SW30 even higher-
significant loss of  applied 
pressure
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• Developing membranes with high burst 
pressure and low structural parameters

• Testing the OARO process at pilot scale

• Modeling the integration of  OARO with 
other technologies (RO, MVR, MD) to 
minimize the cost/energy of  meeting 
treatment specifications for different effluent 
streams

• Accounting for variable water quality

• Assessing the role for alternative membrane and 
thermal processes

• Building a comprehensive decision matrix

Remaining technical gaps 
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• Identify low cost technology or technology 
combinations across the broad range of  
potential treatment needs at power plants

• Assess energy implications of  the low cost 
technology

Future Work: Developing decision matrix for 
concentrating effluent
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Key findings

• OARO can potentially lower cost to concentration compared against the baseline 
MVR technology

Lessons learned:

• Optimization modeling is a critical tool for techno-economic assessment

Remaining Steps:

• Develop hollow fiber membrane modules with high burst pressure, high 
permeability, and low structural parameter

• Optimize treatment trains that incorporate OARO

• Compare against cost/energy of  other membrane processes

Conclusions



21

References

• Bartholomew, T. V.; Mey, L.; Arena, J. T.; Siefert, N. S.; Mauter, M. S., Osmotically 
assisted reverse osmosis for high salinity brine treatment. Desalination 2017, 421, 3-11.

• Bartholomew, T. V.; Siefert, N. S.; Mauter, M. S., Cost optimization of  osmotically 
assisted reverse osmosis. Environmental Science & Technology. 2018, 52, 20, 11813-21.

• Bartholomew, T. V.; Mauter, M. S., Computational framework for modeling 
membrane processes without process and solution property simplifications. Journal of  
Membrane Science. 2019, 573, 1, 682-693.

• Gingerich, D. B.; Grol, E.; Mauter, M. S., Fundamental challenges and engineering 
opportunities in flue gas desulfurization wastewater treatment at coal fired power 
plants. Environmental Science: Water Research & Technology. 2018, 4, 909-925

• Wenzlick, M.; Siefert, N.; Hakala, A., Tailoring Treated Brines for Reuse Scenarios. In 
SPE/AAPG/SEG Unconventional Resources Technology Conference, Unconventional 
Resources Technology Conference: Houston, Texas, USA, 2018.

https://www.osti.gov/pages/servlets/purl/1479651
https://pubs.acs.org/doi/abs/10.1021/acs.est.8b02771
https://www.sciencedirect.com/science/article/pii/S0376738818326115
https://pubs.rsc.org/en/content/articlelanding/2018/ew/c8ew00264a
https://www.onepetro.org/conference-paper/URTEC-2902572-MS

