Additive Manufacturing of Energy Harvesting Material System for Active Wireless Microelectromechanical Systems (MEMS) Sensors Luis A. Chavez, Ph.D. Candidate

Dr. Yirong Lin, Supervisor The University of Texas at El Paso

Award: DE-FE0027502

- Motivation
- Project Description
- Objectives
- Previous Results
- Updates and ongoing work
- Conclusion
- Future Work
- Acknowledgements

Motivation

- Highly efficient and environmentally benign power and fuel systems require:
 - Critical sensing in modern power plants and energy systems
 - Higher efficiencies in energy conversion
 - Lower emission for near-zero emission power plants

Project Description

- **NETIONAL** ENERGY TECHNOLOGY LABORATORY

- Monitoring/estimating operating conditions in real time is needed for high system performance and reliability, lower emission, higher efficiency
- Energy harvesting and direct sensing using additively manufactured piezoelectric ceramics

Indirect Sensing by Energy Harvesting

Turbines and Gasifiers

- Up to 1200 °C
- Up to 1000 psi
- Oxidative, corrosive, highly reducing

Direct Sensing of Temperature and Pressure

Objectives

LiNbO₃/Graphene Ceramic Composites

- Dielectric and Finite Element Modeling
 - Completed by end of year one
- Binder Jetting Powder Bed 3D printing
 - Ongoing effort to understand fabrication impact in material properties
- Thermal and Vibration Energy Harvesting
 - Testing set-ups already developed
 - Characterization of bulk piezoelectric ceramics completed

Previous Results

Thermal Energy Harvesting – LiNbO3

- Characterize pyroelectric properties of the material
- Perform energy harvesting at different temperature ranges •

-100

-110

Previous Results

Hybrid Energy Harvesting – PZT

- Thermal and mechanical loads were applied
- Study harvester behavior under simultaneous loads

Additive Manufacturing of Ceramics

- ✓ Lead zirconate titanate (PZT), BaTiO3 (BTO), Potassium niobate, ZnO, etc.
- ✓ High piezoelectric coefficient (PZT: 650 pC/N; BTO: 180 pC/N)
- ➤ Brittle; Design limitation for large scale; Thin plate based; non customizable
- × Complicated fabrication process; Limited geometry freedom

Binder Jetting

- Powder bed binder jetting technique
- Binder jetting layer by layer fabrication
- Process of ceramics, metals, polymers, lacksquareand composites
- Geometry design freedom

Binder

manufacturing technology.

ExC

Barium Titanate Printing

- Excellent geometry resolution
- Lattice, size, design freedom

ERG

• Printing, sintering, poling, testing

Fabrication Process

Binder Jetting Printing

- Layer thickness: 100 µm
- Feed to build ratio: 1.75
- Saturation level: 100%

Sintering Process

- 1200 °C
- 2 hours dwell
- No atmosphere control

Poling Process

- Silicone oil bath
- 1 kV/mm
- 60 °C for 1 hour

SEM and XRD

- Green Body Powder
 - L D2.9 x300 300 um

5.0kV 8.7mm x10.0k SE(U) 7/25/2018 17:

- 45 µm powder used
 Sintering induced grain growth
- Still porous in the final ceramic parts
- Crystal structure match with standards

Printing Induced Orthotropic Properties

- All BTO samples were polished to have same thickness about 3.45 mm
- Both perpendicular and parallel orientation were tested
- Layer lines might be induced by powder bed roughness and lack of binder saturation

Dielectric Properties

- Dielectric constant showed orientation dependency
- Capacitance connectivity in parallel or series caused dielectric orthotropic property

Piezoelectric Properties

- Piezoelectric constant also showed orientation dependency
- Defects along the layers absorb applied mechanical loading thus lowering d33

SEM

• Different viewing orientations showed different defect patterns

Property Optimization

Sintering: From Empirical Observations to Scientific Principles, R. German, 2014

Liquid Phase Sintering

Liquid Phase Sintering Profile

NATIONAL ENERGY

> HNOLOGY ORATORY

Binder Saturation Influence

ATIONAL

HNOLOGY

Saturation Influence

Loading Direction Influence

Other Printing Techniques

- Paste Extrusion of PZT
 - High density
 - High functional properties
 - Shape retention and resolution

Paste Extrusion of PZT

NATIONAL ENERGY TECHNOLOGY LABORATORY

Paste Extrusion of PZT

Mechanical Energy Harvesting Optimization

• Enhancing piezoelectric response through geometry

Mechanical and electrical strain response of a piezoelectric auxetic PZT lattice structure

Tobias Fey¹, Franziska Eichhorn¹, Guifang Han¹, Kathrin Ebert¹, Moritz Wegener¹, Andreas Roosen¹, Ken-ichi Kakimoto² and Peter Greil¹

Mechanical response $(\sigma^{al}_{22} = -1.62 \text{ MPa})$	Poisson's ratio	Poisson's ratio Strain amplification fa		Stiffness co cients (GPa		
Measured	$ \frac{ \nu_{21}}{-2.05} $	$\varepsilon^{al}{}_{1}/\varepsilon^{b}$ -70	$\frac{\varepsilon^{al} 2/\varepsilon^{b}}{34}$	$C^{al}_{11} 0.385^{a}$	$\frac{C^{al}_{22}}{1.62}$	
Calculated —rib flexure —rib stretching	-2.29 + 0.5	-173 2.2	33 4.4	0.317 24.6	1.67 12.3	
Piezoelectrical response ($E_3 = -566 \text{ V mm}^{-1}$)	Strain amplification factor		Coup			
Bulk PZT Auxetic lattice	$d^{al}{}_{31}/d^{b}{}_{31} = \varepsilon^{al}{}_1/\varepsilon^{b}$ 30.3	$d^{al}_{32}/d^{b}_{32} = \varepsilon^{al}_2/\varepsilon^{b}$ 29.0	$d^{al}{}_{31} -140 -4240$	$d^{al}_{32} -140 -4060$	$d^{al}{}_{33}$ 400 400	$d^{al}{}_{h}$ 120 -7900

Thermal Energy Harvesting Optimization

• Pyroelectric response enhancement through geometry

Improving Pyroelectric Energy Harvesting Using a Sandblast Etching Technique

Preparing Project for Next Steps

Market Benefits

- Efficiency improvement through continuous sensing
- Reduced down-time by eliminating need to replace thermocouples
- Increase wireless sensing adoptability by industry

Technology-to-Market Path

- Industry partner: ExOne, development of printing parameters for ceramics
- Develop a "packaged system"
- Need for stronger collaborations with industry for testing of 3D printed ceramics in real life settings

Concluding Remarks

Results Summary

- Pyroelectric energy harvesting using a lead free material was demonstrated
- Current and pyroelectric power were characterized at elevated temperatures
- Hybrid energy harvesting was also performed
- It's possible to improve the amount of energy harvested by improving the harvesting circuit design and circuit elements
- Low density ceramics with high piezoelectric response were successfully 3D printed
- Demonstrated testing orientation influence in properties of these ceramics

Concluding Remarks

Future Work

- Further optimize properties of 3D printed piezoelectric ceramics
 - Saturation level and sintering profile optimization
- Characterize energy harvesting capabilities of 3D printed ceramics
 - Influence of testing direction in response
- Perform direct sensing using 3D printed ceramics
- Additive manufacture complex structures to tune piezoelectric and pyroelectric responses
 - Lattice structures

	Year 1			Year 2				Year 3				
	Q1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4	Q 1	Q 2	Q 3	Q 4
Objective 1												
Task 1: Dielectric Modeling												
Task 2: Finite element Modeling										-		
Objective 2												
Task 3: Graphene Synthesis												
Task 4: Binder Jetting 3D Printing												
Task 5: Material Characterization												
Objective 3												
Task 6: Thermal Energy Harvesting												
Task 7: Hybrid Energy Harvesting												
Progress Report												
Final Report												

Acknowledgements

- Funding support by the U.S. DOE NETL (DOE) Grant DE-FE0027502
- Program Manager: Barbara Carney, NETL

Student Involvement

NATIONAL ENERGY TECHNOLOGY LABORATORY

Bethany Wilburn: Lockheed Martin, Intern Samuel Hall: Starting PhD

Luis Chavez: LANL, Intern

Thank you!

Questions?

