

Microstructure and Properties of Hastelloy X Fabricated by Additive Manufacturing

Sebastien Dryepondt, Mike Kirka, Patxi Fernandez-Zelaia & Fred List

ORNL project FEAA119

Crosscutting Review Meeting

This research was sponsored by the U.S. DOE, Office of Fossil Energy, Crosscutting Research Program & the DOE Advanced Manufacturing Office

ORNL is managed by UT-Battelle, LLC for the US Department of Energy

Project Objectives

- Optimize additive manufacturing (AM) fabrication processes for solution strengthened Hastelloy X (HX, Ni-22Cr-19Fe-9Mo) gas turbine components (Fuel injector, Combustor)
- Effect of annealing / HIP'ing on microstructure and mechanical properties of parts fabricated by Selective Laser (SLM) and Electron Beam Melting (EBM)
- Generate data for AM Hastelloy alloy (Tensile, Fatigue, Creep, Oxidation) relevant for Fossil Energy (FE) applications
- Compare properties along and perpendicular to the build direction

HX Made by EBM and SLM

Ebeam (Arcam S12)

Fabrication of EBM and SLM Rods & Plates For Tensile, Creep, Fatigue and Oxidation Testing

Specimen machining perpendicular to / the build direction

Initial specimen surface removed by machining

Similar Composition For EBM, SLM and Wrought HX Except for Si &Mn

Hastelloy X (Ni-22Cr-19Fe-9Mo)

	Ni	Cr	Fe	Мо	Со	Mn	Si	w	С
EBM Alloy	Bal.	21.38	18.55	9.05	1.55	0.01	0.05	0.64	0.078
EBM(Si,Mn) Alloy	Bal.	21.43	18.87	9	1.56	0.67	0.71	0.65	0.048
SLM-1 Powder	Bal.	21.47	18.83	8.96	1.51	0.01	0.16	0.63	0.07
SLM-2 Powder	Bal.	21.72	18.51	8.87	1.51	0.01	0.06	0.6	0.08
Wrought	Bal.	22.06	17.86	9.53	1.8	0.65	0.31	0.6	0.067

• Alloy composition consistent with EBM powder composition

- High concentration of Mn and Si in EBM(Si,Mn) and wrought HX
- Specification: Mn and Si <1%

EBM: Textured & Elongated Grains

Perpendicular to build direction

Along the build direction

Elongated Grain Along the Build Direction & Greater Number of Precipitates for EBM(Si,Mn)

EBM(Si,Mn) = Larger grains (Mo,Si)-rich Carbides

EBM = Larger voids Mo and (Cr,Mo)-rich carbides

Both EBM & EBM(Si,Mn) HX Alloys Exhibit Good Ductility Along BD But Lower Strength < 800°C

Meet cast HX AMS requirement

Lower Strength for EBM & EBM(Si,Mn) HX Alloys Due to Elongated Grains+ Weak Grain Boundary Interface

EBM & EBM(Si,Mn): Good Low-Cycle Fatigue Properties at 800°F/425°C Along the Build Direction

- Crack initiation at interface, not defects

EBM& EBM(Si,Mn) = Lower Creep Strength at 750 and 816°C but High Ductility

- 110MPa: 1000h

12 🎽

HIP'ing at 1177°C/2h/150MPa, "Fast Cooling"

EBM Fully dense, Fewer precipitates EBM(Si,Mn) Micro voids+precipitates at GB

National Laboratory

National Laboratory

Improvement of the Creep Properties After Hip'ing for EBM but not for EBM(Si,Mn). Lower Creep Properties Perpendicular to the Build Direction

CAK RIDGE

National Laboratory

15

Wrought expected lifetime:

- 160MPa: 100h
- 110MPa: 1000h

SLM: Small Elongated Grains, No Precipitate, Hot Tearing Cracks

National Laboratory

SLM2: Low Ductility Perpendicular to The Build Direction Due to The Presence of Cracks

SLM: Very Low Creep Rate and Good Lifetime but Limited Ductility. Significant Decrease of Lifetime for SLM-2 Perpendicular to the Build Direction

SLM-1: Fully Dense Material After HIP'ing at 1177°C/2h/150MPa + Recrystallization

SLM: Fully Dense Material After HIP'ing at 1177°C/2h/150MPa+Recrystallization

Solutional Laboratory

Significant Void Formation in EBM & EBM(Si,Mn) Alloys Related to Mo-rich Precipitates

1000h, EBM(Si,Mn)

- Cr consumption leads to gradient of Cr concentration at the surface and destabilization of carbides
- Void formation is directly related to carbide disappearance

lational Laboratory

SLM: Very good oxidation behavior. Thicker Scale For The As-Fab Surface

Fabrication and Characterization of Hastelloy X **EBM** and **SLM** Components

Fuel injector

SLM Rib

Determination of optimum print strategies

Conclusion

- EBM HX shows great ductility, acceptable tensile strength, great LCF performance but limited creep strength
- Low EBM tensile properties perpendicular to the BD can be improved by HIP'ing. Hip'ing can also improve creep resistance
- SLM HX exhibited good tensile and creep strength but limited ductility along the B.D. Low Creep strength & ductility perpendicular to the BD.
- HIP'ing of SLM HX removed hot tearing Cracks & led to recrystallization
- Hip'ing resulted in isotropic creep behavior for SLM HX similar to wrought HX

