SRI International

Project Review (DE-FE0031552)

DEVELOPMENT OF A HIGHLY-EFFICIENT MEMBRANE-BASED WASTEWATER MANAGEMENT SYSTEM FOR THERMAL POWER PLANTS

Presented by:

Indira Jayaweera, Sr. Program Manager Advanced Technology and Systems Division SRI International

Project Team

Enerfex, Inc.

January 29, 2019 • NETL• Pittsburgh, Pennsylvania

CONTENT

- Project Background
 - Goals and Our Approach
 - Work Plan and Schedule
 - Budget and Team
- Project Progress and Future Work
 - Membrane Development and Testing
 - Simulated solutions and field samples tests
 - Membrane System Modeling
 - Module arrangement

Power Plant Water Management: Flue Gas Desulfurization Wastewater (FGD WW)

Schematic for pulverized coal (PC) power plant with cooling and wet FGD Source: NETL Report, Dipietro, 2009

Simplified FGD effluent flow Source: Michael R. Riffe et al. "Wastewater Treatment for FGD Purge Streams", 2008

To maintain optimum operating conditions in a wet scrubber, a purge stream is discharged from the system (primarily for efficient SO₂ removal and chloride and corrosion control). This aqueous purge stream (FGD blowdown) is acidic (pH \sim 4-6), supersaturated with gypsum, and contains high levels of total dissolved solids (TDS) and total suspended solids (TSS).

The TDS is composed of heavy metals, chlorides, sulfates, calcium, magnesium, and dissolved organic compounds.

Project Description

Project Goals

- The main goal of the current research project is to develop innovative effluent water management practices at coal-fired power plants.
 - Use a membrane separation technology for (1) removing selenium from FGD WW below the effluent discharge limits and (2) recovering FGD makeup water and quality water

Membrane Material

 We use polybenzimidazole (PBI) hollow-fiber membrane (HFM)based separation technology for removing salts from FGD wastewater.

 The PBI membranes are resistant to fouling and can be operated under substantially harsher environments than conditions tolerated by commercially available membranes.

PBI Characteristics and Commercial Availability

- Superb thermal stability: Tg=450°C, degradation at 450°C in air, continuous operating temperature to 250°C
- Excellent resistance to chemicals, acid, and base hydrolysis.
- Commercially available from the US entity, PBI Performance Products, Inc. The polymer is available in powder form or various formulations solubilized in *N,N-dimethyl acetamide* (DMAc)
- PBI membranes are expected to perform better than conventional membranes for treating FGD WW

Zeta potential data for PBI and CA (cellulose acetate) Source: Membranes, 2013, 3(4), 354-374

Advantages of Hollow-Fiber Membrane Architecture

Hollow-Fiber vs. Spiral-Wound Membrane

SRI PBI module

PBI Hollow-Fiber Membrane Asymmetric Structure

- No need for spacers
- Self-supporting structure
- High surface area per unit of membrane module volume: spiral-wound packing density is 800 m²/m³ and hollow fiber is 6000 m²/m³ (Source: Lux Research, Inc.)

Comparison of RO element productivity and flux for HFM and spiral-wound modules (Enerfex modeling)

Project Budget and Team

Cooperative Agreement Grant with U.S. DOE:

Contract No. :DE-FE0031552

Period of Performance:

- 12/19/2017 - 06/18/2020

Funding:

- U.S. Department of Energy: \$639,949
- Cost share: \$160,000
- Total: \$799,949

NETL Project Manager:

- Anthony Zinn: <u>anthony.zinn@netl.doe.gov</u>

Principal Investigator:

- Indira Jayaweera: indira.jayaweera@sri.com

Key Team Members

SRI: Indira Jayaweera, Xiao Wang, Palitha Jayaweera, Elisabeth Perea, Regina Elmore and William Olsen

Enerfex: Richard Callahan

PBI: Greg Copeland and Michael Gruender

NETL

• Funding and technology oversight

SRI

- PBI membrane development
- Membrane testing

Enerfex, Inc.

- Membrane system modeling **PBI Performance Products, Inc.**
- Provide PBI dope
- Generon, IGS
- Module and optional membrane fabrication site

Our Work Plan

- Test the SRI seawater desalinization PBI HFMs for separating sulfates and selenium from an FGD WW simulant and then from real-world FGD WW samples
- Use the data to design and model the optimized membrane unit arrangement for reduced energy operation
- Fabricate high-strength PBI HFMs suitable for processing high-salinity (high-osmotic pressure) brines

Project Timeline and Milestones

-				BP1							BP1																		
			Q0		Q	1		Q2	}		Q3		Q4	!	0	25		Q	6		Q7		Q	8		Q9		Q1	10
Task	Start Date	End Date	(Lec	Feb	March	April	May	June	July	Aug.	Oct.	Nov.	Dec.	Jan.	Norch	Anril	Mav	June	July	Aug.	Sep.	Nov.	Dec.	Jan.	Feb.	Marcn Anril	May	June
PBI HFM BP1 and BP2	12/1/2017	5/31/2020																											
Task 1.0 - Project Management and Planning	12/1/2017	5/31/2020																											
Task 2-0: Membrane Development and Testing	2/1/2018	7/31/2019																											
Subtask 2.1 - Development of a Test Plan	12/1/2018	1/31/2019																											
Subtask 2.2 - Membrane Selection and Testing	2/1/2018	7/31/2019																											
Subtask 2.3 - Development of Small Diameter Fibers	10/1/2018	3/31/2019																											
Subtask 2.4 - Preliminary Membrane Modeling	1/5/2018	2/28/2019																											
Task 3.0 - Testing With Filed Samples	4/1/2019	4/30/2020																											
Subtask 3.1 - Performance Evaluation	4/1/2019	6/30/2019																											
Subtask 3.2 - Long Term Testing and Fouling Testing	7/1/2019	4/30/2020																											
Subtask 3.3 - Fabrication and testing of Small Diameter Fibers	10/1/2019	3/31/2020																											
Task 4.0 - Modeling	4/1/2019	5/31/2020																											
Subtask 4.1 - Modeling of Module Arrangement	4/1/2019	8/31/2019																											
Subtask 4.2-Modeling of System Integration	8/1/2019	4/30/2020																											
Final Report																													

Task/Sub task No.	Milestone Description	Planned Completion	Status		
1	Updated PMP	1/18/2018	D		
1	Kickoff Meeting	3/18/2018	ETE		
	Completion of small-diameter RO membrane fabrication protocol		1PL		
2.3	development	3/18/2019	≥ O		
2.4	Completion of preliminary membrane system modeling	3/18/2019	0		
2.2	Completion of membrane testing with synthestic water and data analysis	7/30/2019	50% COMPLETE		
	Completion of PBI membrane performance testing with real field wastewater	10/30/2019	STARTED		
3.1	samples	10/ 50/ 2015	STARLED		
3.2	Completion of longer-term membrane fouling testing	5/18/2020	NOT YET STARTED		
	Completion of fabrication and pressure testing of small-diameter RO	4/19/2020	STARTED		
3.3	membranes	4/ 16/ 2020	STARTED		
4.1	Completion of membrane module assembly array	9/18/2019	STARTED		
	Completion of identification of system components for effluent management	5/18/2020			
4.2	system	5/ 16/ 2020	NOTILISIARIED		
1	Final report	6/18/2020			

Task 2. Membrane Development and Testing Task 3. Testing with Field Samples

Spinning Line Installed at SRI in 2015 DE-FE0012965

The new spinning line was crucial for developing an improved and robust spinning process that can be transferred to industry. The new line enabled:

- Use of multiple coagulation solvents
- Optimization of fiber diameter by controlled stretching
- Optimization of the fiber dense-layer thickness

Small Diameter Fiber Development

Achievement:

More than 40% HFM diameter reduction from SRI base HFMs Established the protocol to fabricate less than 350 µm OD HFMs

Completed the Protocol Development for small diameter fibers

336 micron OD and 186 micron ID

Preparation of PBI HFMs for High-Flux Applications

(HFM choice for the second stage)

PBI HFM Lumen Surface Before and After the Interfacial Polymerization (previous work)

Fiber Series 63J

Thin layer (<0.3µm)

Left: High-magnification picture of the lumen surface of the PBI HFM Right: High-magnification picture of the PBI HFM lumen surface after interfacial polymerization to generate a very thin polyamide dense layer

Note: The uneven lumen surface is a good support structure and a high surface area. The ridges on the composite layer also provide a very high surface area \rightarrow high flux

HFM Performance

Fiber Optimization and Testing

- Vary the HFM dense layer thickness by adjusting the spinning parameters
- Use N₂ permeation (GPU) measurement for fiber screening
- Evaluate the performance using 2000 ppm NaCl, MgSO₄ or NaSO₄

HFM ID		63C-1	63C-2	63J-1	63J-2	63F-1	63F-2	63E -1	63E -2	63H-1	63I-1	631-2
	Pressure (psi)	514	515	503.5	504	512	512.5	509	509	514	516	518
2000 ppm MgSO ₄	Flux (LMH)	17.4	20.9	8.97	12.3	14.7	12.0	12.2	16.5	10.2	17.9	16.5
	Rejection (%)	71.2	74.6	82.6	81.3	85.3	86.1	78.8	79.9	84.3	75.9	75
	Pressure (psi)	522.5	526	522.5	523.5	504.5	508.5	502	504	514	512	509
2000 ppm Na ₂ SO ₄	Flux (LMH)	16	19.6	11.3	12.5	13.2	11.6	13.8	16.0	9.12	18.9	17.2
	Rejection (%)	82	83	77.5	76.5	83.5	84.3	85.2	85.6	81.3	58.9	59.4
N ₂ Permeance (GPU)		1100	1100	1200	1200	1040	1040	1300	1300	1400	2274	2274

Test Results for Synthetic Solutions (<15,000 ppm)

Flux a	nd Reject	tion		Flux and Rejection as a Function of					
			Feed TDS :	~ 15,000	Feed TDS : ~ 1,500				
Module O	Time	Flux (LMH)	Permeate solution conductivity/TDS	Rejection (%)	Module O @ 400 psi				
	2 hr 4 hr	5.70 5.69	0.805 ms/535 ppm 0.803 ms/532 ppm	96.3 96.3	$\begin{array}{c} 12.00 \\ 10.00 \\ \hline \\$				
Module P	Time	Flux (LMH)	Permeate solution conductivity/TDS	Rejection (%)	→ 96.90 → 96.85 → 96.				
*. PBI-	2 hr 4 hr IFP is a surfa	5.87 5.75 ace modified	0.213 ms/141 ppm 0.237 ms/159 ppm PBI HFM	99.0 98.9	2.00 0.00 				
Т	est Solut	ion Compo	osition		Pressure vs. Time Profile of the				
		Composition			Membrane Module O				
Salt	Concentratio (ppm)	n lor	ns Concenti (ppn	ration n)					
CaSO ₄ CaCl ₂ MgCl ₂ NaCl	2511 7029 7553 1731	Ca ⁻ Mg Na	2+ 327 2+ 190 4 ⁺ 681 - 1119	2 8	400				

100 -

100

200 Time(min)

PBI HFM performance is as Predicted

1773

18824

Total

SO42-

300

Concentrated Synthetic Solution Testing

Feed TDS : >20,000 ppm

Synthetic Solutions

- Prepared solution with solids was stirred overnight to saturate the dissolved salt concentration
- Particle settling tendency was tested and a decanted solution was used in HFM performance evaluation
- Initial PBI HFM performance evaluation was done at 580 psi and the testing is ongoing (>95% salt removal with water flux of 3 to 5 LMH)

FGD Raw Water

• Currently evaluating the best method to process the raw FGD water

Bench-Scale UF Systems at SRI

Modified applied membrane UF system for testing 2.5 -in PBI hollow-fiber membranes.

Small-scale performance testing station (1-in modules) for UF applications

Both these systems are recent installments

Bench-Scale RO Systems at SRI

Small-scale performance testing station (1-in modules) for RO applications

C: Conductivity meter; P: Pressure transducer; T: Thermocouple; F: Flow meter; B: Backpressure regulator; V: Valve ---: Computer interface

Fiber Modules

Pumps, storage tanks and data acquisition systems are not shown

Modified Applied Membrane's RO system (1-5 gpm) for testing 2 to 4-in PBI hollow-fiber membranes.

A photograph of the front

A photograph of the back showing two vessels for testing commercial module in parallel with SRI PBI HFMs

The small bench-system is used for performance evaluation of the membranes under the current project.

Task 4. Modeling

Modeling of Module Arrangements

- Setting up the model to simulate array of HFM modules
- Selenium data [SRI test data] simulation and evaluation of the permeability coefficients
- Simulation of a 2 stage system without a recycle
- Simulation of a 2 stage system with a recycle
- Selenium removal technology comparison
- Estimation of the water productivity in a HFM based modules

F	Pre	imir	nary	Re	sult	s fro	om	Mod	deli	ng				
Modeling of Se Removal										Feed FGD press, psia	wastewa 514.7	ater:		
I I I Dsia I LMH I L/H I LB/H I SeQ₄ I Mass	⁻² ppb Bal. solute re	1st \$ 1st stg. ne 5D WW FGD R2 Re 314.7 n/a 100.08 220.58 250 100.0% jection = 98.6%	Stage, m ² = 49. et press. diff, s WW Plus ref ecycle = F1 cc 314.7 2.17 106.15 233.95 258.0 n/a	0 electivity = 8.3 centate R1 pr ncentrate i 311.7 0.95 46.41 102.19 535.7 46.3%	ermeate P1 nterstage 150.0 1.22 59.74 131.66 42.6 n/a	2nd stg. net p Feed F2 Interstage n/a	2nd Sta ress.diff. sele Reter Mbr. 317.7 9.76 59.74 131.66 42.6	ge, m ² = 6.1 sctivity = 38.2 ntate R2 Perme Recycle Clean 314.7 0.97 5.95 13.10 396.1 n/a	eate P2 Wateer 15.0 8.79 53.78 118.54 3.6 53.7%	LMH L/h Ib/h Se, Ib/h* Se, pb kWh/10 ³ gal. of feed * times 10 ⁻¹	n/a 100.15 220.73 55.18 250.0 6.1	Feed + 2 nd S press, psia LMH L/h lb/h Se, lb/h* Se, pb * times 10 ⁻⁶	tg. retentate i 514.7 15.87 112.04 246.9 57.54 233.0 Retentate co	recycle:
- - -			<u>-</u> Wa	ater Pro	oductiv	/ity			-		7. r	1 ²─── →	press, psia LMH L/h	511.7 3.22 22.76
1 1		Stage one Stage two			e two	System Stage one						Z	lb/h Se, lb/h*	50.19 55.05
		rete	ntate	perm	ieate			permeate	2 st pres	g.Retentate recycle: ss, psia 314.7 LMH 2.33	P1	Permeate in	Se, ppb * times 10 ⁻⁶ terstage:	1096.8
i		Se reject	psi	Se reject	psi	H ₂ O rec.	Se, ppb	LMH		L/h 11.82 lb/h 26.02	$\overline{+}$	P1 press, psia F2 press, psia	15.0 317.7	
i	SRI PE	99.8%	515	0.25%	318	77%	0.8	12.64		Se, lb/h* 2.34 Se ppb 90.1	Ŷ	LMH**	12.64 89.28	
	VSEP -	1 100 %	515	0.009%	318	78%	0.2	50.91	time	es 10 ⁻⁶		lb/h	196.77	
	Ref: VSE (Hydran	-1 is comr autic's ES	nercial wa PA2-LD mo	ste water odules) by	treatmer / New Log	it membra gic Researc	ane syste ch, Inc.,	m	I recycl	le to feed 0.11803	F2	Se, lb/h* Se, ppb * times 10 ⁻⁶ **2 nd stg. =	2.48 12.6 17.58	
1	Due te	o the P	BI hollo	w fiber	memb	orane's	highe	r active		Ц	m²		Permeate cle press, psia	ean water: 15.0
I I	memt	orane a	rea per	eleme	nt, a h	ollow fi	ber ele	ement	I		/		LMH L/h	15.25 77.46
i	with a	12.6 L	MH sp	ecific p	ermea	te flow	will yie	eld the					lb/h Se, lb/h*	170.72 0.14
I I	same	total cl	ean wa	iter per	meate	produc	ct flow	as a					Se, ppb * times 10 ⁻⁶	0.8
spiral membrane of the same element volume having a 50.9 LMH specific permeate flow.									Modeling	j of 2	2-stage	system	٦	

26

Ongoing and Future Project Work

Current Ongoing Work

- Task 1. Project Management
 - Continuing project discussions with Enerfex and PBI Performance Products
 - Initiating discussions with Generon to establish a subcontract
- Tasks 2 & 3. Membrane Development and Testing
 - Continuation of testing according to the test plan
 - Testing with simulated solutions and field samples
- Task 4. Membrane Development and Testing
 - Modeling of the system Integration

Concurrent development of membrane technology for multiple applications would be advantageous in scale-up efforts. Currently SRI has two parallel membrane development projects.

Acknowledgements

- Anthony Zinn and others at NETL
- SRI Team: Indira Jayaweera, Xiao Wang, Regina Elmore, Palitha
 Jayaweera, Elisabeth Perea, Srini Bhamidi and Bill Olson
- Richard Callahan (Enerfex, Inc.)
- Greg Copeland and Michael Gruender (PBI Performance Products)
- John Jensvold and his team (Generon IGS)
- Prodip Kundu (OLI Systems)

Disclaimer

This presentation includes an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference herein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed herein do not necessarily state or reflect those of the United States Government or any agency thereof.

Contact:

Dr. Indira Jayaweera Sr. Staff Scientist and Sr. Program Manager indira.jayaweera@sri.com 1-650-859-4042

Additional U.S. and international locations

www.sri.com

Thank You

SRI International

Current State of the Art (SOA) in FGD WW Treatment

The SOA is a combination of the following methods:

- Lime softening to remove magnesium hardness
- Soda ash softening to remove calcium hardness (20% of the total cost)

 $\begin{array}{rcrcrcr} MgSO_4 & + & \dfrac{Lime}{Ca(OH)_2} & -> & Mg(OH)_2 & + & CaSO_4 \\ & & & \dfrac{Soda \ ash}{Na_2CO_3} & -> & \dfrac{Precipitate}{CaCO_3} & + & Na_2SO_4 \end{array}$

- Ion exchange to reduce calcium down to 50 ppm (acid regeneration is required for high-salinity FGD WW)
- Thermal process
- Membrane separation (microfiltration, MF; ultrafiltration, UF; reverse osmosis, RO; and/or forward osmosis, FO).

Main Challenge in Membrane Separation:

Membrane fouling is attributed to high levels of sulfate present in FGD WW systems

FGD WW Composition, Solubility, and Osmotic Pressure

Average pollutants in untreated FGD WW (Source: Smith, 2009)

	FGD
	(ppm)
Boron	100-600
Calcium	300 - 10,000
Magnesium	1000 - 4000
Potassium	45
Sodium	500
Chloride	10,000 - 25,000
Nitrate	1 - 400
Selenium	1 - 10
Sulfate	3,000 - 20,000
Alkalinity	10 - 250
pH	4.5 - 5.5

Understanding sulfate solubility/precipitation with varying temperature and compositions is important in designing the overall effluent management system.

Gypsum and anhydrite precipitation from a concentrated brine solution. Source: OLI Systems

Feed and retentate compositions for a RO membrane operating with >50% water recovery

Component (mg/l)	Raw FGD wastewater	Retentate
Calcium	3290	<mark>7000</mark>
Magnesium	1850	<mark>4000</mark>
Sodium	663	<mark>1300</mark>
Chloride	11,050	<mark>23000</mark>
Sulfate	1,945	<mark>4000</mark>

Selenium Separation

The speciation of Se with pH can play a key role in effectiveness of separation, especially at low levels

- The most common form of Se in the FGD wastewater is selenite
- The most common technologies to date for Se: media filtration, chemical treatment, and biomediated removal

Challenge

- The FGD WW has a high concentration of total dissolved solids (TDS) ranging from 15,000 to 45,000 mg/l, which makes selectively removing the Se very difficult and often requires systems to be large enough to treat a significant portion of the TDS before being able to reach an acceptable Se concentration
- The solubility of calcium selanate is much higher than that of calcium sulfate; therefore, **Se is not effectively removed with gypsum**
- The weak sorption on common adsorbents such as flocculating polymers, carbon, and ion exchange make it difficult to achieve the lower Se

Eh-pH diagram for selenium species in water

- The selenite is present as the single-charged anion, HSeO₃⁻(below pH 7) but as the doublecharged anion, SeO₃²⁻ (above pH 7)
- The selenate, SeO₄²⁻ is present as doubly charged even below pH 4 (pKa ~ 1.7)

It has already been shown that RO can be used to remove selenium oxyanions from FGD WW Source: New Logic Research

Fabrication of Fibers with Good Reproducibility

Quality control is the KEY to success when scaling-up

- Developed protocols for spinning < 0.3-μm dense layer hollow-fiber membranes with membrane OD 450 to 650 μm. ABOVE: ~ 0.1-μm fibers with ~ 600-μm OD.
- Fabricated hollow-fiber membrane with a very thin, dense layer (< 0.3 μm) in kilometer lengths with very good reproducibility
- Tested more than 100 fiber bundles (1-in) for fiber-spinning optimization
- Spun > 100 km of fiber for modules fabrication (4-in)

Achievements (Gas Separation Membrane):

- Dense-layer thickness reduced from 1 μm to < 0.3 μm
- Fiber diameter reduced from 1 mm to less than 600 μm

DE-FE001296