

Energy Efficient Waste Heat Coupled Forward Osmosis for Effluent Water Management at Coal-Fired Power Plants Project Number DE-FE0031551

N. Rajagopalan, Ph.D.

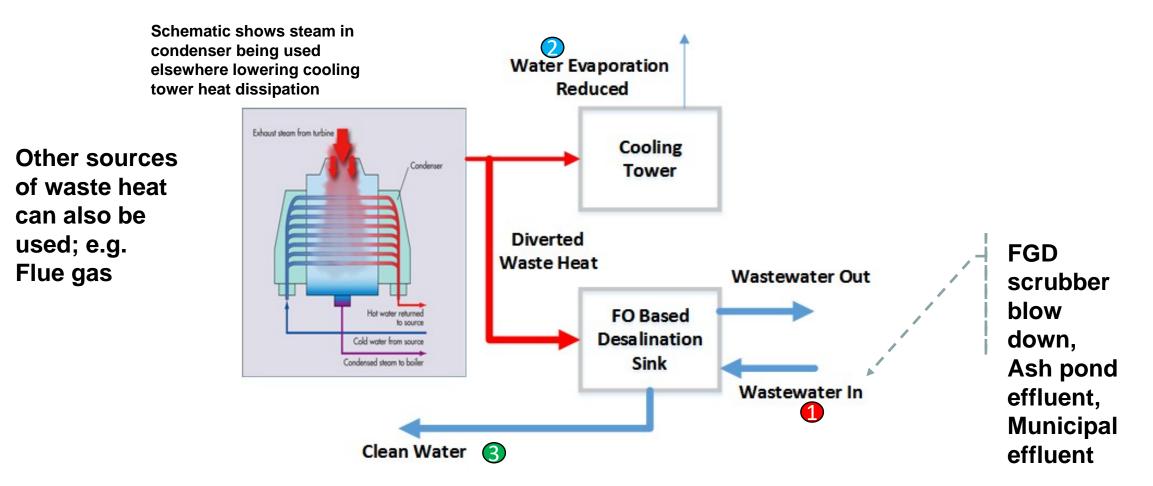
University of Illinois at Urbana-Champaign

Partners: Trimeric Corporation, Illinois Power Plant

DOE/NETL Project Manager: Mr. Charles Miller

Section 1

- Terminology
- Objectives
- Alignment with DOE
- State-of-Art Comparison



Terminology

- Power plant effluents: <u>FGD scrubber blowdown</u>; cooling tower blowdown; ash transport water, etc.
- Management: Water <u>reuse/recycling</u>; Compliance with <u>ELG /CCR</u>;
- Waste Heat Coupled: <u>Treatment</u> methods driven by flue gas or condenser heat or other sources
- Forward Osmosis: <u>Thermal energy driven osmotic</u> membrane based process operating at <u>ambient pressure/temperature;</u>
- Energy Efficient: Targets: <a><200 kJ/kg thermal of water produced & <<u>3.6 kWh/m³</u>

Waste Heat to Water in Power Plants

Project Objectives

- Overall goal
 - Evaluate a transformational low energy (<200 kJ/kg water) waste heat coupled forward osmosis (FO) based water treatment system (the Aquapod[©]), to manage effluents, meet cooling water demands and achieve water conservation in complex and unique environment of a power plant environment
- Specific objectives
 - To map the available wastewater sources and waste heat in a coal-fired power plant of 2009 vintage.
 - To establish the *technical* and *economic* feasibility of utilizing the Aquapod[©] process to recover at least 50% usable water from degraded water sources such as FGD blowdown, other proximal wastewater.
 - To evaluate the ability of FO operational modes to handle highly fouling stream such as FGD blowdown without extensive softening.

Alignment with DOE Goals

Current Project aligns with

DE-FOA-0001686/ AOI 5 Effluent Water Management at Coal-Fired Energy Plants goals of

- understanding the overall water balances, understand constituents of concern, and reduce overall treatment requirements
- promoting innovative effluent water management practices at coal-fired energy plants.
- developing water treatment and reuse methods that employ low energy or waste heat solutions

Aquapod[©] & Current State-of-Art

Aquapod

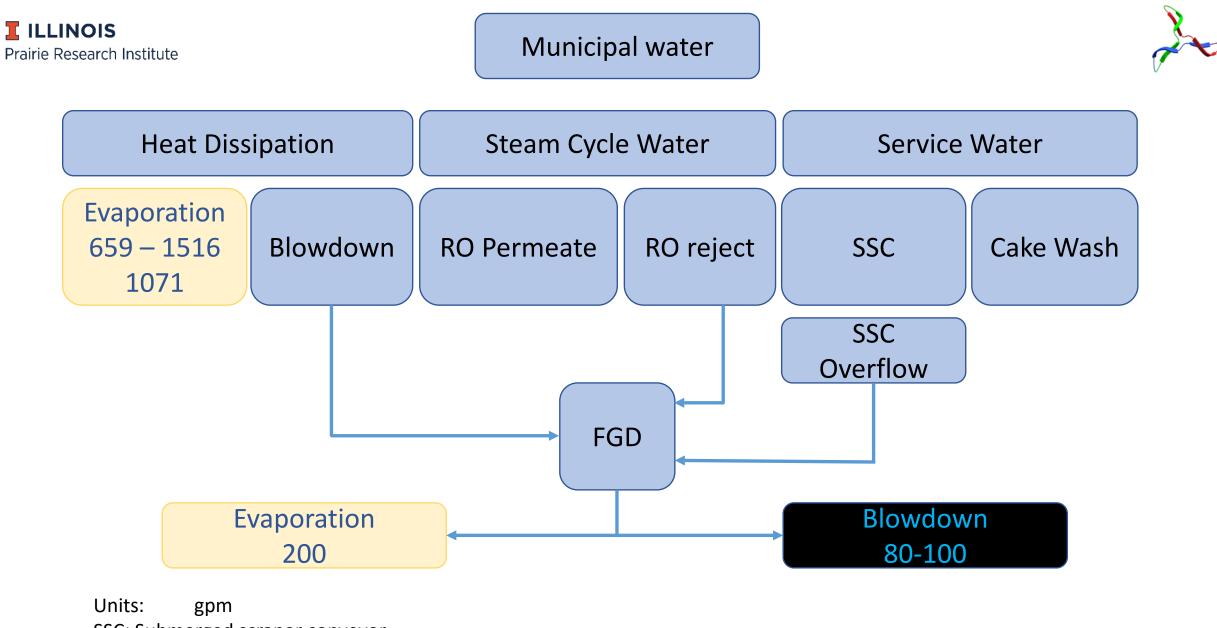
- Uses heat/waste heat as opposed to electrical energy
- Requires minimal pretreatment
- Low energy consumption; thermal
 <200 kJ/kg; electrical <3.6 kWh/m³
- Simple equipment primarily membrane modules, mixer settler systems
- Benign chemicals
- Range of TDS: 10-12% NaCl

Other technologies

- RO, NF use electrical energy
- RO, NF need more extensive pretreatment for high fouling streams such as FGD scrubber blowdown
- Membrane distillation/ ammonium carbamate based FO systems have energy consumption in the range of 400 – 1200 kJ/kg
- Ammonium carbamate FO systems use ammonia, more complex equipment.

Section 2

230 MW Coal Fired Power Plant


- Water Use/Effluent In Power Plants
- Waste Heat Availability
- Conclusions

Mapping Wastewater

230 MW Coal Fired Power Plant

SSC: Submerged scraper conveyor 1071 – median value of evaporation in cooling tower

Potential Wastewater Sources for FO Treatment

Wastewater Source	Potential Volume Available GPM	Comments	Ability to meet cooling water demands
FGD Blowdown	80-100	Depends on chloride level set point in scrubber; problematic from a regulatory standpoint; high fouling stream	~ 2.5-7.5% ^a
On-site WWTP	(4.29 MGD/~3000 gpm)		100 %
Wastewater from nearby municipal wastewater treatment plant	(10 MGD Design Average Flow/~ 7000 gpm)		100 %

^a FGD blowdown assumed to be between 80 and 100 gpm; 50% reuse of this stream assumed; cooling tower make up water needs are taken to be 659 – 1516 gpm (100 MWh – 230 MWh)

Wastewater Characteristics Relevant for FO

Stream Description	GPM	Comments	Total Dissolved Solids mg/L	Osmotic Pressure psia	Minerals Exceeding Saturation Potential Scalants
FGD blowdown water	80-100	To municipal wastewater treatment plant	10,000 -12,200	83	Calcite, Fluorite, Barite, Gypsum , Bayerite, Sellaite, Siderite, Brucite
Inlet to on-site wastewater plant	~3000	Currently treated and discharged to Lake; water not used for current unit	320	3	Bayerite, Barite
Secondary Influent from Municipal WWTP	~7000	Available within 10 miles from the IL Power Plant	570	7	Calcite, Siderite, Bayerite

Mapping Waste Heat

230 MW Coal Fired Power Plant

Waste Heat Sources in IL PP

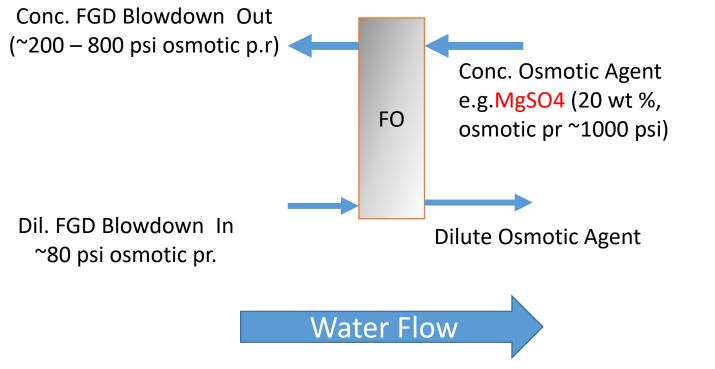
Stream	Temperature Available °F (°C)	Heat Quantity (MMBTU/Hr)	Quantity of Water Generated by Evaporation assuming 1000 BTU/lb for evaporation
Condenser water	106 (41)	921	Too low for evaporation without excessive vacuum.
Flue gas at Air Preheater Outlet	300 (149)	52	Approximately 100 gpm of water can be evaporated using the heat in flue gas;
Bottom Ash Overflow Water	140 (60)	2.75	Insignificant

Section 2: Conclusions

- Waste heat available in flue gas sufficient to desalinate ~1000 gpm of wastewater through low energy FO process (200 kJ/kg)
- Part of the waste heat in condenser water can be used in the FO process as well
- FGD scrubber blowdown most troublesome from treatment and regulatory point; of greatest interest to utility; can satisfy only small portion of cooling tower demands; best suited for FO due to high fouling nature
- Other wastewater (onsite/offsite) can supplement cooling tower requirements

Section 3

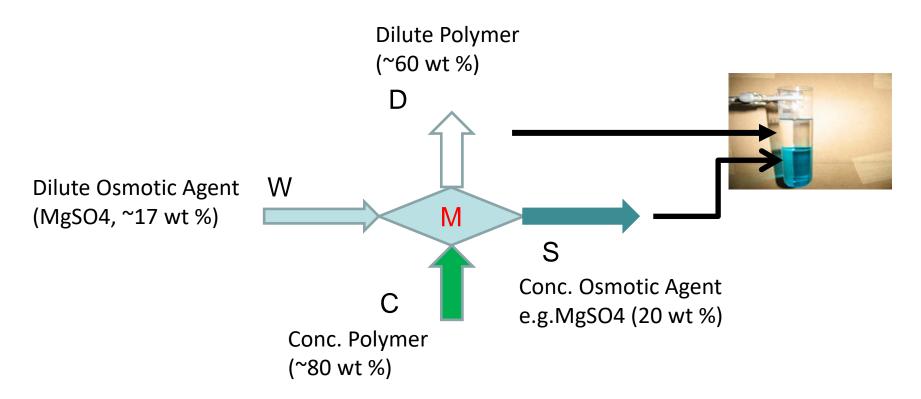
230 MW Coal Fired Power Plant


Aquapod – Working Principle FGD-FO Data Salt-Polymer Selection Considerations Summary Next Steps

Aquapod FO Process Principle

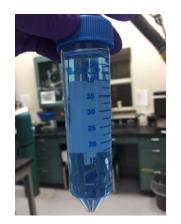
Step 1: Conventional FO Using Inorganic Salt

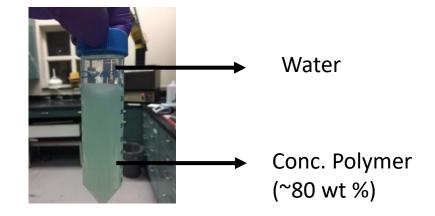
MgSO4 used as osmotic agent in this project


- Nontoxic
- Noncorrosive
- Adequate osmotic pressure (upto 1800 psi)
- Low reveres salt flux
- Cheap

Aquapod FO Process Principle

Step 2: Polymer EXTRACTS water from MgSO4 solution

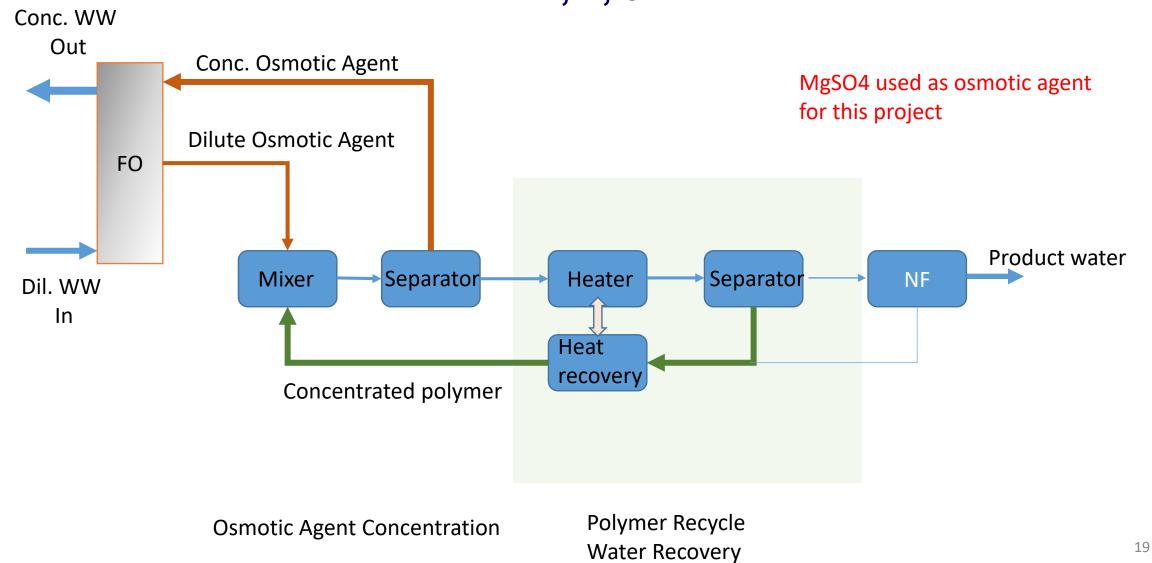

Polymer and MgSO4 are insoluble Form two phases at room temperature Streams D and S are in chemical equilibrium i.e., osmotic pressure of streams are same



Aquapod FO Process Principle

Step 3: Heat polymer to extract water

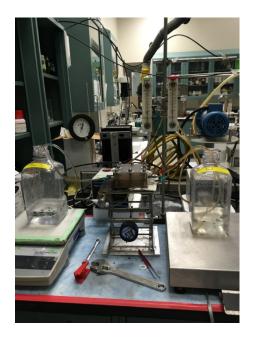
Heat above cloud point (e.g., 80 C)

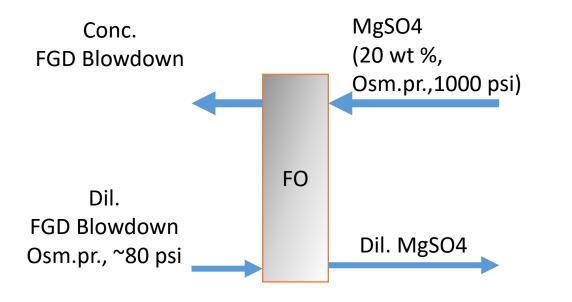

Dilute Polymer (~60 wt %)

Concentration of polymer in polymer phase is a function of temperature

Aquapod FO Flowsheet 1, 2, 3...

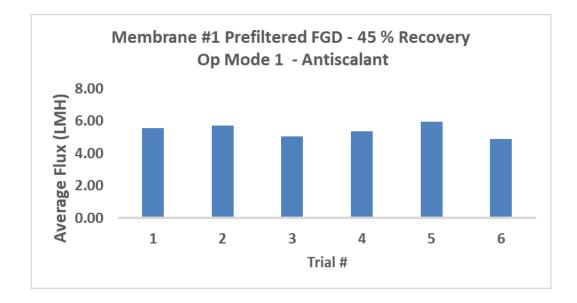
Section 3

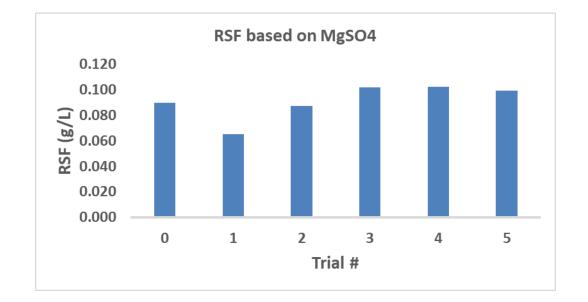

230 MW Coal Fired Power Plant


Aquapod – Working Principle FGD-FO Data Salt-Polymer Selection Considerations Summary Next Steps



FGD Blowdown Concentration FO Testing

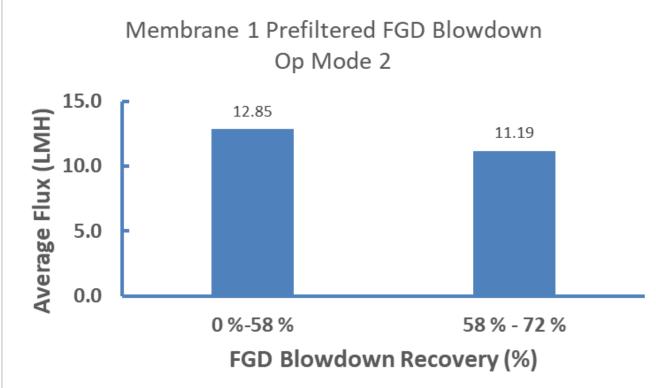

FO Batch Testing


Membrane Cell 0.00266 m²

FGD Blowdown Concentration FO Membrane

Membrane stable RSF low No precipitation of gypsum observed

Prefiltered 0.45 micron Antiscalant addition ~4 ppm



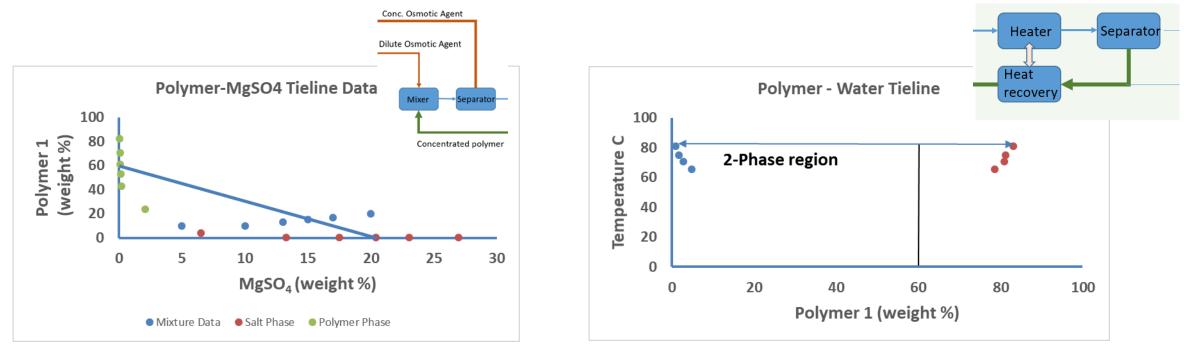
FGD Blowdown Concentration FO Membrane

75% recovery achievable Minimal pretreatment No gypsum precipitation Future work to target 90% recovery

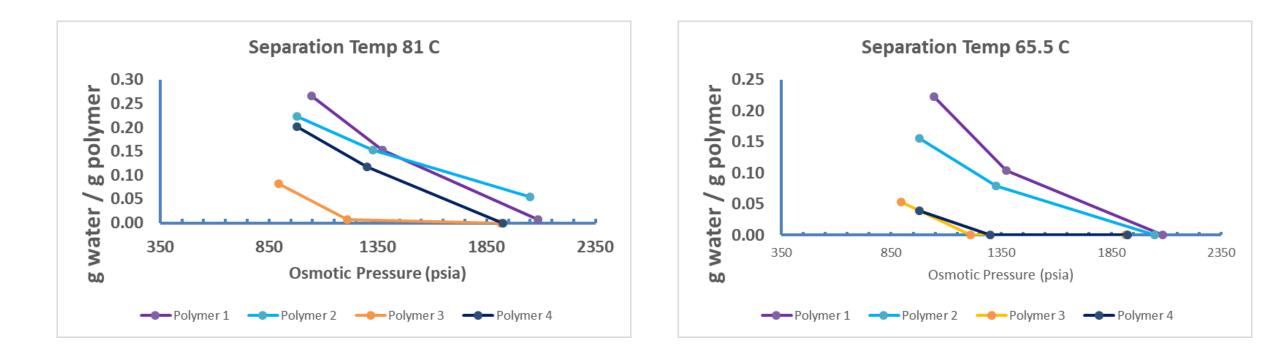
Prefiltered 0.45 micron (gear pump requirement) Process will use 2-5 micron filtration Antiscalant addition ~4 ppm

Section 3

230 MW Coal Fired Power Plant


Aquapod – Working Principle FGD-FO Data Salt-Polymer Selection Considerations Summary Next Steps

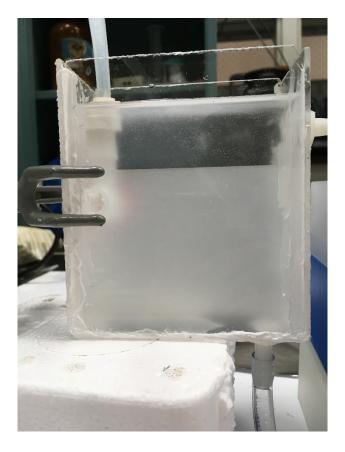
Polymer Selection Criteria


- Polymer ability to extract water from salt solution (MgSO4)
 - Required data salt polymer tieline data; polymer water phase diagram as function of temperature - calculate g water extracted/g of polymer

Water Extraction Capacity of Polymers

Polymer Selection Criteria

- Polymer Salt separation kinetics
- Polymer Water separation kinetics
- Polymer cost
- Polymer stability


MgSO₄-Polymer Separation Kinetics

Impeller mixing of all polymers and salt achieves phase equilibrium in <2 minutes

UCON polymer phase separates cleanly in 30 minutes under gravity;

Salt phase hazy with particles of ~10 micron

Ongoing work to lower separation time and reduce carryover in bottom phase;

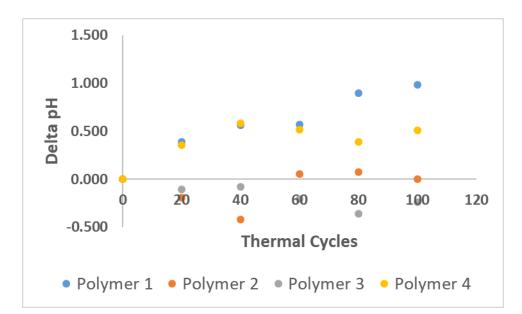
Polymer Water Separation Kinetics

- Polymer Water Separation ~84 C
 - Polymers 1 and 4 separate readily within 5 minutes for process relevant conditions
 - Polymer 2/3 more difficult
 - Further exploration in scale-up

Before

<5 min of settling

Polymer Selection Criteria Other Considerations


Cost

Polymer 1~Polymer 4

>

Polymer 2~Polymer 3

Thermal Stability

Polymers 1 & 4 show degradation indicating need for antioxidant stabilizers

MgSO₄ – Polymer Pairs

- Four MgSO₄ –polymer pairs identified
- All are able to provide osmotic pressures adequate for >80% recovery of water from FGD wastewater
- Three need a temperature of about 60 85 °C accessible with flue gas;
- Polymer 3 has a low threshold temperature in the vicinity of condenser water temperature (45 ° C) – lower water carrying capacity/g polymer – intriguing possibilities for low TDS, high fouling streams
- Separations of salt-polymer and polymer-water do not seem to present unusual difficulty but will need to be optimized – may need coalescers etc.
- Polymer 1 will be used for scale-up; Polymer 4 is in commercial use; Polymer 2 is backup to polymer 1

Summary

- Sufficient waste heat is available within power plant to recover significant amount of water from FGD blowdown using low energy FO.
- 50-75% recovery water recovery from FGD blowdown has been achieved by FO at this plant with minimal pretreatment at small scale with coupons; achieved in short term tests. Next target is 90% recovery.
- Membrane flux is stable and viable at high recoveries;
- Energy target values of <200 kJ/kg and <2 kWh/m³ achievable based on mass and energy balance, and preliminary PFD.

A

Next Steps

1. Conduct preliminary TEA and identify areas for improvement.

2. Integrate mixing and settling systems for salt-polymer separations.

3. Integrate heating and polymer-water separation units.

4. Test FO modules.

5. Identify residual management options.

6. Complete final TEA.

Notable Partnerships

 Working closely with FO membrane/equipment vendors, exchanging information, and best practices

 Working with IL Power Plant and leveraging their knowledge base on operation and treatment

Commercial partners and end-user involvement are critical to advance TRL of technology in subsequent scale-up

Acknowledgements

Project Team

Project Manager

- Mr. P. J. Becker (IL PP)
- Dr. S. Chandrasekaran (Univ of Illinois)
- Ms. Martina del Cerro ((Univ of Illinois)
- Ms. K. Drombowski (Trimeric Corporation)
- Mr. R. McKaskle (Trimeric Corporation)
- Dr. K. C. O'Brien (Univ of Illinois)
- Mr. Vinod Patel (Univ of Illinois)
- Mr. Brandon Powell (IL PP)
- Dr. Xuesong Zhang (Univ of Illinois)

Mr. Chuck Miller NETL/USDOE

THANK YOU