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 Energy production from fossil fuels relies heavily on clean water
 Clean water for boiler steam, flue gas desulfurization (FGD) unit & cooling – Water usage is 

dominated by cooling needs.

 An estimated ½ gallon of water is consumed per kWh of electric power produced
 Water needs will increase significantly due to carbon capture (CC) 

 30% increase in water consumption anticipated with CC addition to pulverized coal power plant

Energy-Water Nexus

Ref: A. Delgado, M.S. Thesis, MIT, 2012

Ref: www.netl.gov



Growing water and energy needs, and fresh water scarcity mandate  water 
conservation, treatment & re-use

 Lost water vapor recovery
 Evaporation from cooling towers and flue gas

 6 to 13 % water vapor depending on 
the coal feedstock and FGD

 20% water vapor capture enough to make
power plant self-sufficient.

 Water vapor recovery will improve efficiency 
by latent and sensible heat recovery

 Difficult to capture: Low partial/total pressure

 Alternate water resources: Extracted brines and RO reject stream
 Require extensive processing to produce power plant quality water 

 High salinity brine; salinity ranging from >40,000 mg/L to >300,000 mg/L & at elevated temperatures

Water Management
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Elevated Temperature Membrane 
Separations

Applications of Interest:

Flue Gas Dehydration

High Salinity Brine Treatment
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PBI Membranes for Flue Gas 
Dehydration

Goal
Thermo-chemically robust membrane material demonstration 
and fundamental performance data gathering for water vapor 

capture from power plant flue gas



 No industry standard process to capture water from flue gas
 Condensing heat exchangers, membranes and desiccant based dehumidification 

techniques proposed for flue gas dehydration
 Chemically challenging stream due to the presence of SOx & NOx
 Condensing heat exchangers (CHX) are cost effective but expensive (Levy, 2011)

 Cost & benefit of CHX dependent on the flue gas temperature  (135 °F downstream of the FGD 
scrubber & 300 °F  in power plant without FGD scrubber)

 Acid formation during condensation mandates the use of expensive alloys to minimize corrosion
 Produced water can be used as cooling water or FGD make-up

 Dessicant drying systems are energy intensive 
 Parasitic energy losses in dessicant regeneration
 Low quality of water produced

Flue Gas Dehydration



 Selective transport of water vapor in dense hydrophilic polymer membranes under 
water vapor pressure gradient
 Sulfonated PEEK (Sijbesma, 2008) evaluated in pervaporation mode

 High ideal H2O/N2 selectivity 
 Water quality was not high enough for boiler 

make-up; significant transport of SO2 and NO2

 Membrane condensers
 Inorganic transport membrane condensers (Wang, 2012) 

enabled 40% water vapor capture 
 Presence of minor amount of sulfate and inorganic carbon in 

permeate water reported

 Hydrophobic porous membrane to condense water vapor on 
feed side (Macedonio, 2016)
 Processes using cold sweep gas (air) or cooling water proposed

Flue Gas Dehydration: Membranes
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 PBI-based materials/membranes exhibit exceptional thermo-chemical stability
 Tg > 400 °C, board operating temperature opportunities
 Chemically robust – no degradation in steam and H2S at elevated temperatures
 High water uptake and water vapor selectivity

 15 wt% water sorption

 Demonstrated ability to tailor transport properties 
via materials design and processing protocols

 Processability demonstrated,  industrially 
attractive hollow fiber platform

Background: PBI Based Materials/Membranes

Ref: Akhtar et.al., J. of Mater. Chem. A, 2017, 5, 21807 



 Ideal water vapor permeability of PBI measured at flue gas representative conditions
 Consistent water vapor permeability measured for 3 samples

Attractive Water Vapor Permeation Characteristics

 Thickness ≅ 55 µm
 Sweep gas: He



 PBI has high water vapor perm-selectivity over both CO2 and N2

 Water vapor permeability decreased with feed pressure
 H2O/CO2 selectivity = 4000
 H2O/N2 selectivity estimated at ≈ 48,000 (based on CO2/N2 selectivity of 12)

High Water Vapor Perm-Selectivity



 Measure PBI membrane performance at flue gas process conditions 

PBI Membranes for Flue Gas Dehydration

 Permeability & selectivity at varied 
operating conditions

 H2O, SO2 and NO detection using 
FTIR multi-gas detector   
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 PBI film evaluated in SO2 and NO containing mixed feed stream
 Operating conditions and composition mimicking power plant flue gas  

PBI Impurity Tolerance Evaluation



 Real-time permeate composition determination using in-line multi-gas FTIR analytics

Permeate Stream Analysis

*Switched to N2 sweep due to 
absence of proper calibration data in Argon

 Water vapor and CO2 
concentrations stable over the 
test period.

 No evidence of SO2 and NO in the 
product stream

 Trace analysis of condensed water 
will be conducted to ascertain 
purity.



 High water vapor transport characteristics maintained in the presence of SO2 and NO
 H2O/CO2 initial increased prior to attaining a stable value
 Water vapor permeability seems to decreasing very slowly

Long Term Durability 

 11% reduction in water vapor 
permeability over 12 days of exposure 
to SO2 and NO

 Water vapor permeability decrease 
may be due to SO2 and/or NO sorption 
or reaction with PBI
 Re-evaluation with feed gas without SO2

and NO, and pure gas will be conducted 
 Post-evaluation chemical functionality 

analysis of membrane may provide 
evidence of reaction between membrane 
and feed stream components



 Preliminary process design envisioned to capture water vapor from power plant flue 
gas aimed at:
 High purity water recovery for use as boiler make-up water
 Water vapor latent heat recovery to improve power plant efficiency
 PBI membrane process using sweep gas or vacuum to provide driving force for water 

vapor transport
 Power plant cooling water for condensation of captured water vapor

Flue Gas Dehydration Process Design
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 Vapor compression and upgrading for increased plant integration opportunities
 Water vapor is compressed to increase temperature and pressure followed by 

further upgrading in an absorption heat pump for generating steam suitable for carbon 
capture solvent regeneration

 Wang et.al. 2017 showed that integration of a dual heat adsorption pump can potentially 
reduce power consumption for carbon capture by 10.5%

 Clean water vapor (w/o SOx and NO) after membrane separation would enable low cost 
materials for compressor and heat pump construction 

Flue Gas Dehydration Process Design (cont.)
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 Water vapor transport characteristics of PBI materials are attractive for flue gas 
dehydration 
 Water vapor permeability 4000 – 5000 Barrer at flue gas representative conditions (65 °C)
 Extremely low N2 and CO2 permeability beneficial for high process efficiency enabled 

by low parasitic (energy) loss resulting from their permeation 
 Stable performance reported in SO2 and NO containing feed gas at flue gas operating 

conditions
 Future work
 Continue PBI membrane evaluation for water vapor perm-selectivity at flue gas representative 

conditions in the presence of SO2 and NO.
 Demonstrate longer term performance stability and durability 

 Perform process design and energy calculations to develop a PBI membrane based process for 
energy and water vapor recovery from flue gas meeting the DOE/NETL – Fossil Energy program 
goal of improved power plant efficiency.

Summary: Flue Gas Dehydration
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High Salinity Brine Treatment

Goal
Thermo-chemically robust membrane material demonstration 
and fundamental performance data gathering for high salinity 

brine treatment



 Reverse osmosis – Most energy efficient for desalination
 Widely used for seawater (TDS < 40,000) desalination on large industrial scale
 Inherently limited to low salinity brine

 Other Industrial technologies: Evaporative crystallization (EC) and mechanical 
vapor compression (MVC) 

 High Cost, High Parasitic Load, Energy Inefficient

High Salinity Brine Treatment

TDS Limitations
 Limited opportunities to treat high salinity 

brine having TDS > 50,000 mg/L

Temperature Limitations 
 The low operating temperatures of current RO 

membranes (typ. < 50 °C) limits energy efficient 
integration into high temperature high salinity 
streams (70 to > 150 °C) and power plant waste 
streams (120 to 140 °C).

Aines, R.D., et al., Fresh water generation from aquifer-pressured carbon storage: feasibility of treating saline formation waters. 
Energy Procedia, 2011;Shaffer, D. L., et al., Desalination and Reuse of High-Salinity Shale Gas Produced Water: Drivers, 
Technologies, and Future Directions. Environ Sci Technol 2013, 47 (17).



 Membrane distillation/pervaporation is attractive technology for brine separations.
 Supplement clean water needs for power plants operation
 Improve power generation opportunities/efficiencies (e.g. Brayton cycle)
 Reduce extracted water disposal costs by reducing volumes

 HGSBSM can be thought of as MD in extreme operating environments

Advanced Water Treatment Method

Hot Sweep Membrane Brine Separations (HGSMBS)



 Advances in membrane materials and systems capable of withstanding thermo-
chemically challenging operating conditions of the HGSMBS process are required. 
 High hydrolytic and thermo-oxidative stability (process scheme dependent)
 Stability in high TDS environments
 Fouling resistance
 Resistance to other extracted water components/contaminants
 Appropriate water/water-vapor transport properties
 Current commercial membrane limitations for HGSMBS
 Low thermo-chemical stability especially in presence of steam, superheated water, and 

oxidizing environments
 Industry standard membrane materials (e.g. cellulose acetate, polyamide, polyimide) have low 

hydrolytic stability

 Fouling and degradation in high salinity feed streams

Technology Challenges & Opportunities
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PBI Membranes for High Salinity 
Brine Treatment

Goal

Leveraging high water vapor perm-selectivity & exceptional 
thermo-chemical tolerance of PBI membranes for high 

salinity brine treatment at elevated temperatures



 PBI membranes evaluated in semi-continuous pervaporation mode
 High temperature and pressure membrane stir cell with feed injection to maintain steady 

feed concentration

High Salinity Brine: Vapor Permeation Evaluation 
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 Water transport of PBI membranes measured for NaCl/water solution measured 
in pervaporation mode at elevated temperatures approaching 200 °C

Influence of Salt Solution Exposure

 Higher temperature generates higher vapor 
pressure resulting in larger driving force for 
water vapor permeation while higher salt 
concentration reduces the vapor pressure 



 Steady water vapor permeation rate demonstrated over extended operating period at 
120 °C and 100,000 PPM NaCl feed
 Demonstrates thermo-chemical robustness of PBI materials in high salinity brine

PBI Material Durability

Water vapor flux calculated for  industrially 
representative thickness (200 nm) = 

116 to 150 kg m-2 h-1



 Thermo-chemically robust polybenzimidazole-based membranes having high 
water/water-vapor transport characteristics are attractive for brine treatment 
 Water transport rate of PBI membrane increases at elevated temperatures providing 

opportunities for power plant waste heat utilization 
 Demonstrated tolerance of PBI membrane to NaCl solutions at concentrations and 

temperatures approaching 200,000 PPM and 200 °C, respectively
 Future Work
 Develop process design and optimization for water treatment relevant to power plant 

generated waters
 Integration of membrane pervaporation process 

with available power plant waste heat
 Hybrid membrane evaporation + vapor compression 

process to zero liquid discharge

Summary: High Salinity Brine Treatment

Vane et.al., J Chem Technol Biotechnol. 2017, 92(10): 2506–2518



Operated by Triad National Security, LLC for the U.S. Department of Energy’s NNSA

U N C L A S S I F I E D

Acknowledgement

Department of Energy
Office of Fossil Energy (FE)/NETL – The Crosscutting Research Program



 H. Sijbesma, K. Nymeijer, R. van Marwijk, R. Heijboer, J. Potreck, M. Wessling, Flue gas 
dehydration using polymer membranes, J. Membr. Sci., 313 (2008) 263-276.

 E. Levy, H. Bilirgen, J. DuPont, Recovery of water from boiler flue gas using condensing 
heat exchangers, DOE/NETL DE-NT0005648 Final Project Report, 2011.

 D. Wang, A. Bao, W. Kunc, W. Liss, Coal power plant flue gas waste heat and water 
recovery, Applied Energy, 91 (2012) 341-348.

 Wang, D., et al. (2017). "Upgrading Low-temperature Steam to Match CO2 Capture in 
Coal-fired Power Plant Integrated with Double Absorption Heat Transformer." Energy 
Procedia 105: 4436-4443.

 Macedonio F., Brunetti A. (2016) Membrane Condenser. In: Drioli E., Giorno L. (eds) 
Encyclopedia of Membranes. Springer, Berlin, Heidelberg

References


	Water Treatment and Water-Vapor Recovery Using Advanced Thermally Robust Membranes for Power Production
	Energy-Water Nexus
	Water Management
	Elevated Temperature Membrane Separations
	PBI Membranes for Flue Gas Dehydration
	Flue Gas Dehydration
	Flue Gas Dehydration: Membranes
	Background: PBI Based Materials/Membranes
	Attractive Water Vapor Permeation Characteristics
	High Water Vapor Perm-Selectivity
	PBI Membranes for Flue Gas Dehydration
	PBI Impurity Tolerance Evaluation
	Permeate Stream Analysis
	Long Term Durability 
	Flue Gas Dehydration Process Design
	Flue Gas Dehydration Process Design (cont.)
	Summary: Flue Gas Dehydration
	High Salinity Brine Treatment
	High Salinity Brine Treatment
	Advanced Water Treatment Method
	Technology Challenges & Opportunities
	PBI Membranes for High Salinity Brine Treatment
	 �High Salinity Brine: Vapor Permeation Evaluation 
	Influence of Salt Solution Exposure
	 �PBI Material Durability
	Summary: High Salinity Brine Treatment
	Acknowledgement
	References

