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 Purpose: incorporate GPUs into DFTB to accelerate calculations of multi-
component alloys at high temperatures

e Strategic alignment to Fossil Energy objectives:
GPU-enhanced DFTB enables fast predictions of complex,
structural materials used In fossil energy power plants

 Technology benchmarking

e Classical molecular dynamics: can handle large systems but cannot
provide first-principles prediction of multi-component alloys

« Density functional theory (DFT): can probe guantum-mechanical nature of
alloys but cannot handle large sizes relevant to alloys

* Density functional tight binding (DFTB): can probe large systems quantum-

mechanically, but faster than DFT
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o Current Status of project
Successfully incorporated GPUs into DFTB for extremely fast calculations of large
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* Project on-track to meet deliverables: goals/objectives have not changed

Phase 1. GPU parallelization done; Phase 2: DFTB parameterization in progress

* Industry/input or validation
Recently presented at 2018 TechConnect World Innovation Conference & Expo to
disseminate results for industrial partnerships

Gave invited talk at 2018 American Institute for Chemical Engineers (AIChE) Meeting:
well-received by industry researchers at ExxonMobill
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Why Use DFTB for Alloys?
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« Density Functional Tight Binding (DFTB): course-grained, parameterized DFT

with atomic-centered basis functions
 DFTB extremely fast for large systems

K. Leong, M.E. Foster, B.M. Wong
J. Mater. Chem. A 2, 3389 (2014)

> 1,000 atoms in unit cell
(geometry optimizations ~ minutes)

 Implemented GPU-enhanced DFTB Iin this project to accelerate dynamics

calculations of alloys
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DFTB (a condensed summary) SHamoNaL
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 DFTB Hamiltonian (more on this from Anshuman later)

. . 1.
HDFTB - <¢u|Ho|¢v) + ESuv Z(VAX + VBX)ACIX + Erep
X

VAN

0th order Hamiltonian 2"d order terms
for core & valence depending on interatomic
electrons separation & charge fluctuations

overlap
matrix

« Computational savings: pre-parameterized “basis” functions

pre-tabulated as function of R,

— simplifies integrals in SCF procedure
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 Accelerated DFTB-based dynamics on alloy systems with massively-
parallelized GPUs

Thread distributor

Thread Processing:
Chuster

NVIDIA
GPU processors

 Examined variety of algorithmic implementations & benchmarks of
different hardware configurations

« Recently accepted in Journal of Chemical Theory & Computation (IF: 5.4)
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« CPU/GPU benchmarks on large systems (~15,000 atoms!)
« Different algorithms exhibit varying performance
 Almost perfect application for large complex systems (i.e. alloys)

CPUs vs GPUs algorithm comparison
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Leveraging GPU-enabled DFTB N=|ranonaL

TL TECHNOLOGY
LABORATORY

Why DFTB?

e DFT good for small systems Ab initio
i O

e C(Classical molecular dynamics can handle large systems 100s of atoms
but are missing the QM part

icoseconds

 DFTB merges reliability of DFT with computational
efficiency of tight binding
e Slater-Koster files used instead of DFT functionals
Challenges
e DFTB limited by set of parameters for elements in periodic table (Slater — Koster files)

Goal

* Create Slater — Koster files for missing element pairs
* Then leverage DFTB to calculate phase diagram of multi-component alloys

.S. DEPARTMENT OF
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Hamiltonian Elements (eV)

(parametrized) clectrostatic repulsion
interactions ° > r(A) a 0 Yo 6
" Frep lumps together many-body effects (e.g., Hyy (1) = (b (@) [Ho|dy (T —14)), Sy ()= ()| by (r — 1))

exchange-correlation
5 ) Hy= —%‘72 + Verr[ P + vesr PP (r — 15)]

*  Hgy and overlap matrix elements parametrized
beforehand from DFT calculations
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Leveraging GPU-enabled DFITB TE NERQY

‘ DFTB Parameterization - RESULTS

.-.-.- A(DFTB-DFT)%

FeH, 3 r 1.54 1.503 -0.037 -2.40
a 102.365 110.34 7.975 7.79

5 r 1.66 1.58 -0.08 -4.82

a 177.3 179.9 2.6 1.47

FeO 1 r 1.54 1.6 0.06 3.90
3 r 1.58 1.68 0.1 6.33

5 r 1.61 1.75 0.14 8.70

Fe(CH3), 1 r 1.92 1.89 -0.03 -1.56
o] 117.7 125.71 8.01 6.81

3 r 1.94 2.13 0.19 9.79

5 r 2.05 1.96 -0.09 -4.39

Accelrys Software Inc., Discovery Studio Modeling Environment, Release 8.0 , San Diego: Accelrys Software Inc., 2007.

r in Angstrom, a in degrees
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* High temperature phases upon heating are @nergies of few stru@
relevant in fossil fuel technologies
e Use Cluster Approach to Statistical Mechanics 1
(CASM) to obtain phase diagram Lattice Model Hamiltonian
E(o) =V, +2Vi0i +ZVL-J-GL-GJ- + Z Vijk0i0j o) + ...
e Construction of phase diagram requires l
comparison of free energies of different
phases as function of temperature & Monte Cg{(!,‘;
composition Zzp(k—T)
e Compact way to approximate energy of any @rmodynamics F =—k,TIn(Z)

configuration
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Leveraging GPU-enabled DFITB

Phase Diagrams - CASM

CASM Workflow

e Carry out ab-initio calculations

 Fit cluster expansion (CE)
Hamiltonians

e Perform MC simulations

¢ Primitive cell
e DOFs

(CASM

* DFTB wrappers

e casm-learn
¢ Monte Carlo

e Atomic details

Template DFT
Inputs

TL
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Cluster
Expansion

Calculated Structures

* Ensemble Averages
* Thermodynamic
integrations

RESULTS

J. C. Thomas, A. Van der Ven, Finite-temperature properties of strongly anharmonic and mechanically unstable crystal phases from first

principles, Physical Review B, 88, 214111 (2013).
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Phase Diagrams - CASM
CALCULATION OF PHASE DIAGRAM

e Calculate DFT Energy (E)

e Use calculated E to find ECls

e Monte-Carlo (MC) to find phase boundaries

E=V,0,+ V, ;0007 + 0,03tV ,1,0000; +V,,5010,05 +. ..

J. C. Thomas, A. Van der Ven, Finite-temperature properties of strongly anharmonic and mechanically unstable crystal phases from first principles, Physical Review B, 88, 214111 (2013).
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Phase Diagrams — RESULTS
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B. Puchala, A. Van der Ven, Thermodynamics of the Zr-O system from first-

of HCP-based ZrO,

principles calculations, Physical Review B, 88, 094108 (2013).

Each red circle belongs to specific configuration
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e Calculate DFT Energy (E)
* Use calculated E to find ECls _ |
. Monte_carlo (IVIC) to find 0‘20;2.2 =2.1 =2.0 -1.9 -1.8 -1.7 —1.5'_ 600 -
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Market Benefits/Assessment

e Current market gap: existing simulation tools (i.e. MD/DFT) not capable of predicting
dynamics of large alloy systems

* Benefits: project goals directly translate to understanding (1) structural deformation in
complex alloys & (2) reactive processes in these complex systems

Technology-to-Market Path

 Technology transfer is high: many technologies depend on structural materials,
Including furnaces and structural composites in buildings

« New research: first demonstration of accelerating DFTB with GPUs for large systems

 ExxonMobil expressed some interest at AIChE,; still open to other academic/industry
collaborations (send e-mail to: bryan.wong@ucr.edu)

5% U.S. DEPARTMENT OF
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 Applicability to Fossil Energy and alignment to strategic goals

« GPU-enhanced DFTB enables fast predictions of complex, structural materials used
in fossil energy power plants

- Better than MD & orders of magnitude faster than DFT lCT@a.ofcm.Thmdcﬂmmn

 Next step: incorporate GPU-DFTB into CASM for

predicting phase diagrams of alloy systems x ol

o First demonstration of accelerating DFTB-based
dynamics with GPUs for large systems

« Recently accepted in
Journal of Chemical Theory & Computation (IF: 5.4)
 Featured by editors on next month’s cover! -
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