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What do we want to model?
Creep Strength

• Answers when a material will fail
• Maximum allowable stress that will cause creep 

rupture in a given time
• Usually characterized as maximum allowable stress 

for a creep life of 100,000 hrs

Creep Ductility

• Answers how a material will fail
• Characterized by reduction of area on fracture
• Low ductility failures can lead to catastrophic 

failures (Leak-before-break)

Siefert et al, 32 Intl. J. of Pressure Vessels and Piping 138 (2016) 31-44K. Sawada, et al., Mater. Sci. Eng. A (2011) 528

�̇�𝝐 = 𝒇𝒇(𝑻𝑻,𝝈𝝈, 𝒕𝒕)
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CSEF steels and accelerated creep

Accelerated strength reduction 
in long term creep

Accelerated strength reduction accompanied 
by microstructural degradation.

K. Sawada, et al., Mater. Sci. Eng. A (2011) 528

Blue/Green: MX
Red: M23C6
White: Z-Phase
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Comparison of Creep Models
Hyperbolic Sine Model

• State-of-the-art solution to model creep behavior
• Phenomenological model involving direct fitting to 

experimental data
• Extension to other materials would require the same 

amount of data used in the first fitting

QuesTek’s Creep Model

• Mechanistic model capturing the climb mechanism 
in play

• Easy extension to same material with different 
compositions or even other materials 

J Christopher, et al., Int. J. Damage Mech. (2018)

̇𝜖𝜖 = 𝜌𝜌𝑚𝑚𝑏𝑏𝑏𝑏 = 𝜌𝜌𝑚𝑚𝑏𝑏
𝜆𝜆
𝑡𝑡

= 𝜌𝜌𝑚𝑚 𝑏𝑏 𝜆𝜆
𝑡𝑡𝑐𝑐+𝑡𝑡𝑔𝑔
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QuesTek’s creep model – Dislocation creep

Applied stress (𝜎𝜎)

~mm ~10 μm

M23C6

Block 
boundary

PAGB

T

Resolved shear stress 
(𝝉𝝉𝑹𝑹𝑹𝑹𝑹𝑹)

MX

~1 μm ~1 nm

Effective shear 
stress (𝝉𝝉𝒆𝒆𝒇𝒇𝒇𝒇)

Back stress 
(𝝉𝝉𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒃𝒕𝒕𝒃𝒃𝒆𝒆𝒃𝒃𝒃𝒃)

Lath
boundary

Subgrain
evolution

When 𝝉𝝉𝒆𝒆𝒇𝒇𝒇𝒇 > 𝝉𝝉𝒐𝒐𝒃𝒃𝒐𝒐𝒐𝒐𝒃𝒃𝒐𝒐
GLIDE

When 𝝉𝝉𝒆𝒆𝒇𝒇𝒇𝒇< 𝝉𝝉𝒐𝒐𝒃𝒃𝒐𝒐𝒐𝒐𝒃𝒃𝒐𝒐
CLIMB
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QuesTek’s Creep Model: Cont.

• J Rosler, et al., Acta Metal. (1988)
• E Arzt, et al., Acta Metal. (1988)
• J Zhao, et al., Acta Mater. (2018)

When 𝝉𝝉𝒆𝒆𝒇𝒇𝒇𝒇> 𝝉𝝉𝒐𝒐𝒃𝒃𝒐𝒐𝒐𝒐𝒃𝒃𝒐𝒐 : Glide

𝑏𝑏g = 𝑓𝑓(𝑇𝑇, 𝜏𝜏)

When 𝝉𝝉𝒆𝒆𝒇𝒇𝒇𝒇< 𝝉𝝉𝒕𝒕𝒕𝒕𝒃𝒃𝒆𝒆𝒃𝒃𝒕𝒕𝒐𝒐𝒕𝒕𝒕𝒕 : No climb
(or glide)

̇𝜖𝜖𝑑𝑑𝑑𝑑𝑑𝑑 = 𝜌𝜌𝑚𝑚𝑏𝑏𝑏𝑏 = 𝜌𝜌𝑚𝑚𝑏𝑏
𝜆𝜆
𝑡𝑡

= 𝜌𝜌𝑚𝑚 𝑏𝑏 𝜆𝜆
𝑡𝑡𝑐𝑐+𝑡𝑡𝑔𝑔+𝑡𝑡𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑐𝑐𝑑

Overall Dislocation creep Diffusional creep (Coble)

̇𝜖𝜖𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 = 𝐴𝐴
𝐷𝐷𝑔𝑔𝑔𝑔
𝑑𝑑3

𝜎𝜎

𝜏𝜏𝑡𝑡𝑡𝑡𝑡𝑡𝑡𝑑𝑑𝑡𝑡𝑡𝑡𝑡𝑑𝑑 = 𝑓𝑓(𝑇𝑇, 𝜏𝜏)𝑡𝑡c = �
𝑦𝑦min

𝑦𝑦max 𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑/𝑑𝑑𝑡𝑡

When 𝝉𝝉𝒆𝒆𝒇𝒇𝒇𝒇< 𝝉𝝉𝒐𝒐𝒃𝒃𝒐𝒐𝒐𝒐𝒃𝒃𝒐𝒐 : Climb

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝐶𝐶𝑑𝑑
𝜇𝜇

𝑑𝑑𝐴𝐴/𝑑𝑑𝑑𝑑
=

Driving force for adding vacancies
Number of vacancies required to climb

Decreasing stress
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General climb and local climb modes

General Climb

• Enabled at low stress
• Larger driving force
• More vacancies needed
• Usually slower

Local Climb

• Enabled at high stress
• Low driving force
• Fewer vacancies needed
• Usually faster

General + Climb

• Used in this model
• Captures both modes
• Needs to find 

equilibrium/transition point

J Zhao, et al., Acta Mater. (2018)
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Model application to Grade 91 steel

• Accurate prediction of strain and creep rate at 70 MPa

• Prediction made using experimental data from [1]

• Tertiary creep region was modeled by a necking model

• Captures stress dependence in min. creep rate predictions

• Transition from general  local climb mode observed

(NIMS)

(NIMS)

n = 6

n = 11.5

n = 1

[1] K. Sawada, et al., Mater. Sci. Eng. A (2011) 528
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Transition from dislocation to diffusional creep
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Effect of different microstructural variables

• Creep strain rate most sensitive to MX phase fraction

• Microstructurally sensitive model enables application to different conditions (eg – weld regions)

General climbLocal 
climbGlide
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Modeling microstructural evolution

Subgrain size model [1]

[1] A. Orlova, et al., Mater. Sci. Eng. A (1998) 245

Dislocation number density

• Currently using experimental data values
• Working on dislocation evolution model
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Accelerated creep deformation

Accelerated strength reduction 
in long term creep

Accelerated strength reduction accompanied 
by microstructural degradation.

K. Sawada, et al., Mater. Sci. Eng. A (2011) 528

Blue/Green: MX
Red: M23C6
White: Z-Phase
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Evolution of M23C6 precipitate

Scavenging effect[1]

• Accelerated coarsening explained by increase in diffusion coefficients due Scavenging effect

• A closed loop simulation between creep model and precipitation model will be more accurate

[1] Taneike et al, ISIJ Int. Vol. 4 (2001)

𝑫𝑫𝒆𝒆𝒇𝒇𝒇𝒇 ∝ �̇�𝝐
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Evolution of MXZ-Phase precipitation

Z-Phase is a thermodynamically 
stable phase.

Z-Phase Precipitation consumes 
beneficial MX precipitates.

Heterogeneous nucleation 
on MX precipitates

H. K. Danielsen, Mater. Sci. Tech. (2016) 32K. Sawada, et al., Mater. Sci. Eng. A (2011) 528

70 MPa
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MXZ-Phase precipitation

Critical radius for Z-phase nucleation

Once critical radius is reached, phase fraction is 
modeled using a JMAK equation with driving force of 

Z-Phase as input
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Effect of composition on Z-phase driving force

CALPHAD method enables prediction 

of Z-Phase stability as a function of 

composition
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Modeling creep ductility
• Important to model the tertiary creep region accurately to get accurate prediction of creep ductility

• Kachanov-type damage evolution most widely used method for describing tertiary creep

• Damage evolution governed by maximum principle stress

• Phenomenological approach not based on actual creep cavitation and growth mechanism

• QuesTek’s efforts will be based on developing damage evolution model using an extension of Gurson-

type model (GTN model) for modeling ductile failure in porous material 

• Plastic deformation in Gurson model can directly be replaced by creep deformation. Void nucleation and 

growth relation will be taken from Needleman and Tvergaad formulation of Gruson model

• Such a mechanistic approach will enable prediction of damage evolution as a function of composition, 

specifically the inclusion content. (Strong dependence of inclusion on void nucleation reported by EPRI)
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Landscape of long term creep modeling for 
CSEF steels
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A multiscale modeling framework
nm µm mm m

QT creep strain rate model 
+ microstructure evolution model

QT creep damage evolution 
model Convert Composition dependent 

CDM models

EPRI 3002003472 (2014)K. Sawada, et al., Mater. Sci. Eng. A (2011) 528
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Summary
• QuesTek’s creep model

– Captures diffusional and power law creep behavior for Grade 91 steels
– Good agreement with experiments
– Mechanistic approach enables easy application to other (CSEF) alloys

• Ongoing efforts at QuesTek
– Application of model to weld metal and HAZ
– Creep damage evolution model
– QT model to CDM model converter

• Contacts
– Abhinav Saboo (PM), asaboo@questek.com
– Jiadong Gong (PI), jgong@questek.com

This project is funded by DOE SBIR # DE-SC0015922

mailto:asaboo@questek.com
mailto:jgong@questek.com
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