

THE UNIVERSITY OF TEXAS AT EL PASO COLLEGE OF ENGINEERING

2019 Annual Review Meeting for Crosscutting Research

<u>A Guideline for the Assessment of Uniaxial Creep and</u> <u>Creep-Fatigue Data and Models</u>

Student Researcher : Md Abir Hossain

PI : Dr. Calvin M Stewart Co-PI : Dr. Jack Chessa

Outline

- Project Objective
- Motivation
- The Team
- Systematic Approach to Assessment
 - Project Task
 - Project Milestone
- List of Publications
- Ongoing Works
 - Modified Wilshire Model
 - Modified Theta Projection Model
 - Metamodeling
 - Probabilistic Creep Modeling
- Result and Accomplishment
- Future Work
- Market benefits/Assessment
- Conclusion

Project Objective

• Of primary concern to FE practitioners is a determination of which constitutive models are the "best", capable of reproducing the mechanisms expected in an intended design accurately; as well as what experimental datasets are proper or "best" to use for fitting the constitutive parameters needed for the model(s) of interest.

RO1	RO2
	Computational Validation
Development of	and Assessment of Creep
Aggregated Experimental	and Creep-Fatigue
Databases of Creep and	Constitutive Models for
Creep-Fatigue Data	Standard and Non-Standard
	Loading Conditions

Strategic Alignment and 2018 Goals

Power Plant Efficiency Improvement

Recent drives to increase the efficiency of existing fossil energy (FE) power plants and the development of Advanced Ultrasupercritical (A-USC) power plants, have led to designs with steam pressures above 4000 psi and temperatures exceeding 1400°F.

Indirect-Fire Supercritical CO₂ Recompression Brayton Cycle

Oxy-Fueled Directly-Fired Supercritical CO₂ Cycle 4

Technology Benchmarking

- The existing FE fleet has an average age of 40 years.
- The Department of Energy has outlined a strategy of life extension for US coalfired power plants where many plants will operate for **up to 30 additional years of service**.

There is a Need for Improved Creep Prediction Technology

Motivation

_ife

- An immense number of models have • developed predict been to the deformation, damage evolution, and rupture of structural alloys subjected to Creep and Creep-Fatigue.
- Significant amount of research has been done on the creep-rupture model.
- Current research is directed towards • Creep viscoplasticity and meta modeling.

Project focus has shifted from the "Creep and Creep-Fatigue" to just "Creep"

6

The Team

Dr. Calvin M Stewart, Project PI

Mohammad Shafinul Haque Tenure Track Asst. Professor at Angelo State University

Christopher Ramirez Metallurgy Test Technician at Element

Md Abir Hossain Ph.D.

Dr. Jack F Chessa, Project Co-PI

Current Members

Jaime Cano MS

Jimmy J Perez

MS

Signed Offer

with

Lockheed

Martin

Ricardo Vega MS

7

Systematic Approach to Assessment

Project Tasks

- Task 1: Project Management, Planning, and Reporting
- Task 2 : Locate, Digitize, Sort, and Store Creep-Rupture Data
- Task 3: Uncertainty of Creep and Creep-Fatigue Data
- Task 4: Mathematical Analysis and FEA of Models
- Task 5: Calibration & Validation Fit, Interpolation, and Extrapolation of Models
- Task 6: Post-Audit Validation of the Models
- Task 7: Uncertainty Analysis of Models
- Task 8: Final Assessment

Creep Data Thus Far...

Source Creep Deformation Rate Relaxation Time to Cr. Rate Creep Strain Mono. Rupture Cyclic Stress Amp/Cycle Cre-fatigue Tessile P91 ARL-79-33 9 Internation Rupture 16 ASM Attas of Creep & Stress- rupture 20 Internation Internation Internation 316SSS/N ASM Attas of Fatigue 0 Internation Internation Internation ASM Attas of Stress- Corrosion Fatigue 10 Internation Internation Internation Internation ASM Attas of Stress-Strain ASTM DS-60 Internation Internation Internation Internation Internation ASTM STP 522 133 20 160 Internation Internation Planned: Fournier (1), 2008 Internation Internation Internation Internation S04SSS Nagesha, 2002 Internation Internation Internation Internation Internation Int617 Onnu-Intro Integration Internation Internation Internation Internation <t< th=""><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></t<>											
All Crys.s. Deformation Rate Strain Rupture Tensile Hysteresis Amp/Lycite Tensile Hyster		Source	Creep	Stress	Min. Strain	Time to Cr.	Creep	Mono.	Cyclic	Stress	CrFatigue
ARL7933 9 0 0 0 16 P91 Rupture 20 20 14 20 316SSS/N ASM Atlas of Fatigue 14 42 14 ASM Atlas of Stress- Corrosion Fatigue 14 42 14 ASM Atlas of Stress-Strain 14 295 14 106 106 ASM Atlas of Stress-Strain 14 295 14 106 106 ASTM D55-60 133 14 295 14 106 106 ASTM D55-51 134 22 85 14 13 Planned: Fournier (1), 2008 13 13 13 13 Planned: Fournier (1), 2008 13 19 161 304SS Nagesha, 2002 13 19 161 IN617 ORNI-101054 9 38 46 12 14 IN625 ORNI-101053 19 161 14 14 IN718 Rowe, 1963 69 96 78 96 Inthelabasi, 2006 13 15 15 15 IN718 Yan, 2015 13 15 15	Alloys:		Deformation	Relaxation	Rate	Strain	Rupture	Tensile	Hysteresis	Amp/Cycle	Tensile
P91 ASM Atlas of Creep & Stress- Rupture 20 316SS/N ASM Atlas of Fatigue 14 42 14 ASM Atlas of Stress- Corrosion Fatigue 14 42 14 ASM Atlas of Stress-Strain ASTM 055-51 144 295 15 ASTM 575-51 144 22 85 ASTM 575-51 144 295 13 4 13 ASTM 575-51 135 90 160 24 16 Booker and Sikka, 1976 183 13 4 13 13 13 19 161 SO4SSS Fournier (1), 2008 13 19 161 19 161 19 161 161 IN617 ORNL/TM-10504 9 38 46 12 19 161 IN625 ORNL/TM-6608 13 19 161 161 161 161 IN625 ORNL/TM-6608 13 19 161 161 161 161 IN625 ORNL/TM-6608 13 16 161 161 161 161 I	•	ARL-79-33		9							16
Rupture Rupture Addition Image: Construct on the second secon	P91	ASM Atlas of Creep & Stress-	20								
ASM Attas of Fatigue 14 42 14 ASM Attas of Stress- Corrosion Fatigue 106 14 42 14 ASM Attas of Stress-Strain ASTM DS-60 144 295 14 106 16 ASTM SS-51 144 295 15 14 106 16 ASTM SS-51 144 295 15 14 106 16 ASTM SS-51 144 295 15 14 106 16 ASTM SS-51 144 295 16 14 106 16 ASTM SS-51 144 295 16 14 106 16 ASTM SS-51 144 295 16 14 106 16 ASTM STP 522 135 90 160 24 14 Planned: Fournier (1), 2008 13 19 161 S04SS 13 19 161 161 304SS Nagesha, 2002 13 19 161 IN617 ORNL-10504 9 38 46 12 14 IN625 ORNL-5237 6 52 55 14 14 IN718 Rowe, 1963 69 96 78 96		Rupture									
316SS/N ASM Atlas off Stress-Strain 14 42 14 ASM Atlas off Stress-Strain 106 106 160 ASTM DS-60 43 29 160 160 ASTM DS-50 134 29 160 24 160 ASTM DS-50 133 22 85 160 24 160 ASTM STP 522 135 90 160 24 160 160 24 160	24 CCC /NI	ASM Atlas of Fatigue									
Corrosion Fatigue In In In ASM Atlas of Stress-Strain ASM Atlas of Stress-Strain 106 106 ASTM DS5-60 ASTM DS5-51 144 295 106 ASTM STP 124 43 22 85 ASTM STP 522 135 900 160 24 Booker and Sikka, 1976 183 1 13 4 13 Planned: Fournier (1), 2008 56 13 4 13 SO4ASS Fournier (2), 2008 13 19 161 SO4ASS Nagesha, 2002 13 19 161 IN6617 ORNL-T01053 38 46 12 1 IN625 ORNL-T01053 38 46 12 1 IN718 Raw, 2002 55 51 51 6 IN718 Rowe, 1963 69 96 78 96 51 IN718 Rowe, 1963 69 96 78 96 51 IN718 Kimura, 2009 51 6 51 6 IN718 Yan, 2015 13 51 6	31022/IN	ASM Atlas off Stress-					14			42	1/
ASM Atlas of Stress-Strain 106 0 ASTM DS-60 444 295	•	Corrosion Fatigue					14			72	17
ASTM DS-60 ASTM DS5-51 ASTM DS5-51 ASTM STP 124 43 22 85 ASTM STP 124 43 22 85 43 90 160 24 29 Fournier (1), 2008 Fournier (2), 2008 13 4 13 4 13 4 13 29 Fournier (1), 2008 13 13 19 161 183 29 Fournier (2), 2008 13 10 10 10 10 10 10 10 10 10 10		ASM Atlas of Stress-Strain						106			
ASTM DSS-51 144 295 Image: Constraint of the second state of the secon		ASTM DS-60									
ASTM STP 124 43 22 85 ASTM STP 124 135 90 160 24 Booker and Sikka, 1976 183 183 183 Planned: Fournier (1), 2008 56 13 4 13 Fournier (2), 2008 56 2 12 18 304SS Fournier (2), 2008 33 19 161 Nagesha, 2002 13 19 161 NIMS Database 210 245 764 1184 207 IN617 ORNL TM-10504 9 38 46 12 11 ORNL/TM-608 0RNL-101053 10 11 11 11 IN625 ORNL/TM-608 13 10 11 ORNL/TM-608 13 10 11 11 IN718 Ray 2002 55 11 6 Shankar, 2006 13 13 13 13 IN718 Rowe, 1963 69 96 78 96 IN718 Yan, 2015 151 6 IN718 Yan, 2015 13 10 10		ASTM DS5-S1			144		295				
ASTM STP 522 135 90 160 24 Booker and Sikka, 1976 183 183 13 4 13 Planned: Choudary, 2009 56 13 4 13 Fournier (1), 2008 56 2 13 4 13 S04SS Fournier (2), 2008 13 2 12 18 NiMS Database 210 245 764 1184 207 IN617 ORNL TM-10504 9 38 46 12 14 ORNL-101053 110 1184 207 14 14 IN625 ORNL-5237 6 52 55 15 15 IN718 Rowe, 1963 69 96 78 96 51 51 Yan, 2015 Interval Interval 51 6 51 51 Yan, 2015 Interval Interval Interval Interval 51		ASTM STP 124			43	22	85				
Booker and Sikka, 1976 133 4 13 Planned: Choudary, 2009 56 13 4 13 Fournier (1), 2008 29 29 29 29 304SS Fournier (2), 2008 13 19 161 Nagesha, 2002 13 19 161 NiMS Database 210 245 764 1184 207 NIMS Database 210 245 764 1184 207 NIMS Database 210 245 764 1184 207 NUNS Database 210 245 764 1184 207 ORNL-101053 0RNL-101053 0RNL-101053 0RNL-101053 0RNL-101053 IN625 ORNL/TM-6608 0RN		ASTM STP 522			135	90	160			24	
Planned: Choudary, 209 56 13 4 13 Pournier (1), 2008 29 29 29 12 18 304SS Fournier (2), 2008 13 19 161 304SS Nagesha, 2002 13 19 161 Nagesha, 2002 0245 764 1184 207 IN617 ORNL TM-10504 9 38 46 12 1 IN625 ORNLTM-10503 9 38 46 12 1 1 IN625 ORNLTM-6608 1 1 1 1 1 IN718 Rau, 2002 52 55 51 6 Shankar, 2006 13 51 6 51 51 Takahasi, 2008 1 1 1 51 51 War, 2015 13 13 13 13 13 13		Booker and Sikka, 1976			100	183	200				
Planned: Fournier (1), 2008 20 29 304SS Fournier (2), 2008 13 2 12 18 304SS Fournier (3), 2008 13 19 161 NIMS Database 210 245 764 1184 207 IN617 ORNL TM-10504 9 38 46 12 10 ORNL-101053 ORNL-5237 6 52 55 IN625 ORNL/TM-6608 0 18 10 ORNL 5237 6 52 55 10 IN718 Rowe, 1963 69 96 78 96 Yan, 2005 51 6 Yan, 2015 Yan, 2015 33		Choudary, 2009			56	100			13	4	13
Fournier (2), 2008 13 2 12 18 304SS Fournier (2), 2008 13 19 161 Nagesha, 2002 NiMS Database 210 245 764 1184 207 IN617 ORNL TM-10504 9 38 46 12 IN625 ORNL-101053 0RNL/TM-6608 IN718 Ray 2002 55	Planned	Eournier (1), 2008			30				10	29	20
304SS Fournier (3), 2008 13 10 10 Nagesha, 2002 13 19 161 NIMS Database 210 245 764 1184 207 ORNL TM-10504 9 38 46 12 10 10 ORNL-101053 0RNL/TM-6608 0RNL-5237 6 52 55 55 IN718 Rau, 2002 18 18 18 18 IN718 Gowe, 1963 69 96 78 96 IN718 Yan, 2015 51 6 51	r lannea.	Fournier (2), 2008							2	12	18
304SS Nagesha, 2002 10 10 10 IN617 Nagesha, 2002 210 245 764 1184 207 IN617 ORNL TM-10504 9 38 46 12 10 ORNL-101053 ORNL/TM-6608 0 10 10 10 IN625 ORNL-5237 6 52 55 55 IN718 Rowe, 1963 69 96 78 96 Shankar, 2006 11 10 51 6 Takahasi, 2008 11 11 51 6 Wimura, 2009 33 33 33 33	20400	Fournier (3), 2008		13					-	19	161
NIMS Database 210 245 764 1184 207 IN617 ORNL TM-10504 9 38 46 12 Image: State of the stat	30435	Nagesha, 2002		10						10	101
IN617 ORNL TM-10504 9 38 46 12 ORNL-101053		NIMS Database		210	245	764	1184	207			
INO17 ORNL 101053 SC IO IL ORNL-101053 ORNL/TM-6608 ORNL-5237 6 52 55 IN718 Rowe, 1963 69 96 78 96 Shankar, 2006 51 6 Takahasi, 2008 51 6 W Yan, 2015 33 33 33	INI617	ORNI TM-10504	9	210	38	46	12	207			
IN625 ORNL/TM-6608 Constant of the former of		ORNI-101053									
IN625 ORNL-5237 6 52 55 Rau, 2002 Rowe, 1963 69 96 78 96 Charlenee Shankar, 2006 Charlenee Char		ORNL/TM-6608									
Rau, 20023018Rowe, 196369967896Shankar, 2006516Takahasi, 20085151Yan, 20155353Kimura, 200933	IIN625	ORNI-5237	6		52		55				
IN718 Rowe, 1963 69 96 78 96 Shankar, 2006 51 6 Takahasi, 2008 51 51 Yan, 2015 33		Rau. 2002	0		52		00		30	18	
Invite	INI718	Rowe, 1963	69		96	78	96			10	
Takahasi, 2008 51 ••• Yan, 2015 Kimura, 2009 33		Shankar 2006	05		50	/0	50			51	6
Yan, 2015 33 Kimura, 2009 33		Takabasi 2008								31	51
Kimura, 2009 33		Van 2015									399
		Kimura. 2009			33						

Creep Data Work Thus Far...

List of Publication

• Journal Articles

- Hossain, M.A., and Stewart, C.M., 2019, "Reliability Prediction of Sine-Hyperbolic Creep-Damage Model using Monte Carlo Simulation Method," Journal TBD, (in preparation).
- Cano, J., and Stewart, C.M., 2019, "Application of the Wilshire Stress-Rupture and Minimum-Creep-Strain-Rate Prediction Models for Alloy P91 in Tube, Plate And Pipe Form," Journal TBD, (in preparation).
- Vega, R., and Stewart, C.M., 2019, "Development and Application Of Minimum Creep Strain Rate Metamodeling," Journal TBD, (in preparation).
- Haque, M.S., and Stewart C.M., 2019, "Metamodeling Time-Temperature Parameters for Creep," *Materials at High Temperatures* (under review). MHT-S-18-00109
- Haque, M.S, and Stewart, C. M., 2019, "Comparative Analysis of the Sin-Hyperbolic and Kachanov–Rabotnov Creep-Damage Models," *International Journal of Pressure Vessels and Piping*, (in-press), <u>https://doi.org/10.1016/j.ijpvp.2019.02.001 [PDF]</u>
- Haque, M.S, and Stewart, C. M., 2019, "The Disparate Data Problem: The Calibration of Creep Laws Across Test Type and Stress, Temperature, and Time Scales," *Theoretical and Applied Fracture Mechanics*, **100**, <u>https://doi.org/10.1016/j.tafmec.2019.01.018</u> [PDF]
- Haque, M. S., and Stewart, C. M., 2017, "The Stress-Sensitivity, Mesh-Dependence, and Convergence of Continuum Damage Mechanics Models for Creep," *ASME Journal of Pressure Vessel Technology*, **139**(4). doi:10.1115/1.4036142

List of Publication(cont...)

- Conference Papers
 - Hossain, M.A., and Stewart, C.M., 2019, "Reliability Prediction of Sine-Hyperbolic Creep-Damage Model using Monte Carlo Simulation Method," ASME PVP 2019, San Antonio, Texas, July 14 – 19, 2019. (accepted).
 - Cano, J., and Stewart, C.M., 2019, "Application of the Wilshire Stress-Rupture and Minimum-Creep-Strain-Rate Prediction Models for Alloy P91 in Tube, Plate And Pipe Form," ASME TurboExpo 2019, Phoenix, Arizona, June 17-21, 2019.
 - Perez, J., and Stewart, C.M., 2019, "Asssessment of the Theta Projection Model for Interpolating Creep Deformation," ASME TurboExpo 2019, Phoenix, Arizona, June 17-21, 2019.
 - Vega, R., and Stewart, C.M., 2019, "Development and Application Of Minimum Creep Strain Rate Metamodeling," ASME TurboExpo 2019, Phoenix, Arizona, June 17-21, 2019.
 - Haque, M. S., and Stewart, C. M., 2017, "Selection of Representative Stress Function under Multiaxial Stress State Condition for Creep," ASME PVP 2017, PVP2017-65296, Waikoloa, HI, July 16-20, 2017.
 - Haque, M. S., Ramirez, C., and Stewart, C. M., 2017, "A Novel Metamodeling Approach for Time-Temperature Parameter Models," *ASME PVP 2017*, PVP2017-65297, Waikoloa, HI, July 16-20, 2017.
 - Ramirez, C., Haque, M. S., and C. M. Stewart, 2017, "Guidelines to the Assessment of Creep Rupture Reliability for 316SS using the Larson-Miller Time-Temperature Parameter Model," ASME PVP 2017, PVP2017-65816, Waikoloa, HI, July 16-20, 2017. <u>https://doi.org/10.1115/PVP2017-65816</u>

List of Publication(cont...)

• Short Papers

- Vega, R., and Stewart, C.M., 2019, "Metamodeling of Minimum Creep Strain Rate Models with Temperature Dependence," SETS 2019, EL Paso, TX, March 26-27, 2019.
- Perez, J., and Stewart, C.M., 2019, "An Alternative Method for Interpolating and Extrapolating Strain Predictions Using the Theta Projection Model," SETS 2019, EL Paso, TX, March 26-27, 2019.
- Hossain, M. A., and Stewart C.M., 2019, "Probabilistic Evaluation of 304 Stainless Steel using Sine Hyperbolic Creep-Damage Model," SETS 2019, EL Paso, TX, March 26-27, 2019.
- Cano, J., and Stewart, C.M., 2019, "Modified Wilshire Model for Long-Term Creep Deformation" SETS 2019, El Paso, TX, March 26-27, 2019.
- Vega, R., and Perez, J., and Stewart, C. M., 2018, "Identification of Creep Strain Constants and Accurate Model Fits using Numerical Optimization," SETS 2018, El Paso, TX, April 14th, 2018.
- Haynes, A., Stewart, C. M., 2017, "The Numerical Analysis of Equivalent Stress Functions for Multiaxial Creep Deformation, Damage, and Rupture," SETS 2017, El Paso, TX, April 1st, 2017.
- Ramirez, C., Haque, M. S., and Stewart, C. M., 2017, "Guidelines to the Assessment of Creep Rupture Uncertainty for 316SS using the Larson-Miller Time-Temperature Parameter Model," SETS 2017, El Paso, TX, April 1st, 2017.

Previous Works

Ongoing Work

A Modified Wilshire Model

Biography

- BS in Mechanical Engineering; The University of Texas at El Paso (2014-2018).
- MS in Mechanical Engineering; The University of Texas at El Paso, (Fall 2018-current)
- Graduate Research Assistant at The UTEP Materials at Extreme Research Group (MERG)

Jaime Cano

List of Publication

- Cano, J., and Stewart, C.M., 2019, "Application of the Wilshire Stress-Rupture and Minimum-Creep-Strain-Rate Prediction Models for Alloy P91 in Tube, Plate And Pipe Form," ASME TurboExpo 2019, Phoenix, Arizona, June 17-21, 2019.
- Cano, J., and Stewart, C.M., 2019, "Modified Wilshire Model for Long-Term Creep Deformation" SETS 2019, El Paso, TX, March 26-27, 2019.

Wilshire Model

Stress-Rupture and Minimum-Creep-Strain-Rate Model

Continuum Damage Mechanics (CDM) Framework

Insertion of Wilshire Model into Sinh CDM Model

Sine-Hyperbolic (Sinh) Framework

Modified Wilshire Model

P91 Data @ 600 °C

- The previous model proposed to create creep deformation curves that is not clear and is complicated to implement.
- The modified Wilshire model has a clear analytical approach that depends on the equations already established.
- The rupture predictions of the model enables the capabilities of the modified model to predict ductility even for long-term data.
- The model predicts with high accuracy for P91 and 304 stainless steel even with uncertainty in the data.
- If enough data is given, the model has the capability to predict across multiple isotherms and stress levels due to the nature of the Wilshire model.

Analytical Calibration Approach to Theta-Projection

Jimmy J Perez

<u>Biography</u>

- BS in Mechanical Engineering; The University of Texas at El Paso (2013-2017).
- MS in Mechanical Engineering; The University of Texas at El Paso, (Fall 2018-current)
- Graduate Research Assistant at The UTEP Materials at Extreme Research Group (MERG)

List of Publication

- Perez, J., and Stewart, C.M., 2019, "Asssessment of the Theta Projection Model for Interpolating Creep Deformation," ASME TurboExpo 2019, Phoenix, Arizona, June 17-21, 2019.
- Perez, J., and Stewart, C.M., 2019, "An Alternative Method for Interpolating and Extrapolating Strain Predictions Using the Theta Projection Model," SETS 2019, EL Paso, TX, March 26-27, 2019.

Analytical Calibration Approach to Theta-Projection

A new analytical method of calibration Theta-Projection model is proposed. The traditional method proposed by Evans requires the constants to be calibrated using a **least-square nonlinear** scheme of numerical optimization with respect to an error function. This results in constant values with no physical significance, which in turn does not provide a consistent trend for long-term prediction. The **analytical method** derives the theta constants from test data to give the constants physical realism.

Theta-Projection model

$$\varepsilon = \theta_1(1 - \exp(-\theta_2 t)) + \theta_3(\exp(\theta_4 t) - 1)$$

Primary and tertiary equation are separated

Primary equation $\varepsilon_{pr} = \theta_1 (1 - \exp(-\theta_2 t))$ Tertiary equation $\varepsilon_{tr} = \theta_3 (\exp(\theta_4 t_{\exp}) - 1)$

The accumulated primary strain is equated to θ_1 and is used to back-solve for θ_2 .

The tertiary acceleration is determined by taking the quotient of the second derivative over the first derivative at 95% of rupture time and is used to back-solve for θ_3 .

Primary strain
accumulation
$$\theta_1 = \varepsilon_{pr,acc}$$
Back-solved exponential decay constant
 $1 = \varepsilon_{pr,acc}$ Back-solved tertiary scalar
 $\theta_2 = -\frac{1}{t_{pr,sub-acc}} \ln(1 - \frac{\varepsilon_{pr,sub-acc}}{\theta_1})$ Back-solved tertiary scalar
 $\theta_3 = \frac{\varepsilon_{95\%} - \theta_1}{\exp(\theta_4 t_{95\%}) - 1}$ Tertiary acceleration
 $\theta_4 = \frac{\ddot{\varepsilon}_{95\%}}{\dot{\varepsilon}_{95\%}}$

Modified Interpolation/Extrapolation Functions

The original interpolation/extrapolation function used with the **Thera-projection model** does not consistently provide good predictions with **limited data**. A much more consistent trend with rupture time is proposed for prediction. The error between the new function and the calibrated theta constants is less than that of the original. A benefit to the alternative prediction function is that it **requires less variables** than the original.

	$ heta_1$ NMSE	$oldsymbol{ heta}_2$ NMSE	$ heta_3$ NMSE	$ heta_4$ NMSE
Alternative function	0.0190	4.9527e-4	0.0921	2.2936e-3
Original function	0.0167	9.2036e-4	0.0855	5.3149e-3
% Improvement	12	85	7	131

Rupture Predictions for New Function

The Modified interpolation/extrapolation function requires a method to predict rupture time. The **Wilshire model** provides an equation to predict rupture time that relies on the temperature and stress of test data as well as activation energy for the material. The Wilshire model also serves as **analytical means to predict rupture time** rather than using an arbitrary average rupture ductility to find rupture time using the theta model.

Rearranged to relate experimental stress and temperature to rupture time

Wilshire Equation

$$\frac{\sigma}{\sigma_{TS}} = \exp(-k_1 \left[t_r \exp(-\frac{Q_c^*}{RT}) \right]^u) \qquad t_r = \frac{1}{\exp(-\frac{Q_c^*}{RT})} \left(\frac{\ln(\frac{\sigma}{\sigma_{TS}})}{-k_1} \right)$$

Material constants k_1 , k_2 , u, and v are calibrated using several stresses at various isotherms to predict rupture time

Constant	Plate
$Q_{c avg}^{*}(kJmol^{-1})$	290
$k_1(hr^{-u})$	98.36
u (unitless)	0.1441
$k_2\left(\left(hr^{-1}\right)^{-\nu}\right)$	108.60
v (unitless)	-0.1475

Rupture predictions using the Wilshire equation are compared to calibration data and validation data for a single isotherm of alloy P91.

1/u

Metamodeling Minimum-Creep-Strain-Rate Laws

Ricardo Vega

<u>Biography</u>

- B.Sc. in Mechanical Engineering; University of Texas at El Paso, (2015-2018).
- M.S. in Mechanical Engineering; The University of Texas at El Paso, (Spring 2019-Current)
- Masters Research Assistant at The UTEP Materials at Extreme Research Group (MERG)

List of Publication

- Vega, R., and Stewart, C.M., 2019, "Development and Application Of Minimum Creep Strain Rate Metamodeling," ASME TurboExpo 2019, Phoenix, Arizona, June 17-21, 2019.
- Vega, R., and Stewart, C.M., 2019, "Metamodeling of Minimum Creep Strain Rate Models with Temperature Dependence," SETS 2019, EL Paso, TX, March 26-27, 2019.
- Vega, R., and Perez, J., and Stewart, C. M., 2018, "Identification of Creep Strain Constants and Accurate Model Fits using Numerical Optimization," SETS 2018, El Paso, TX, April 14th, 2018.

Metamodeling Minimum-Creep-Strain-Rate Laws

- Metamodeling is the process of applying mathematical rules and constraints to generate models-of-models. These models-of-models, or "metamodels", exist as a mathematical combination of known models that can regress back into each known model under prescribed constraints
- Metamodel has the capability for the self identification for a given set of data.
- Metamodels can be employed in an unconstrained or pseudo-constrained manner to identify unique MCR models that exist between the known models.

Minimum-Creep-Strain-Rate Models

Model	Equation
Norton 1929	$\dot{\varepsilon}_{\min} = A \left(\frac{\sigma}{\sigma_0}\right)^n * \exp\left(\frac{-Q_c^*}{RT}\right)$
Simplified Norton 1929	$\dot{\varepsilon}_{\min} = A\sigma^n * \exp\left(\frac{-Q_c^*}{RT}\right)$
Nadai 1931	$\dot{\varepsilon}_{\min} = A \exp(\frac{1}{\sigma_0} + c\sigma) * \exp\left(\frac{-Q_c^*}{RT}\right)$
Soderberg 1936	$\dot{\varepsilon}_{\min} = A \left\{ \exp\left(\frac{\sigma}{\sigma_0}\right) - 1 \right\} * \exp\left(\frac{-Q_c^*}{RT}\right)$
McVetty 1943	$\dot{\varepsilon}_{\min} = A \sinh\left(\frac{\sigma}{\sigma_0}\right) * \exp\left(\frac{-Q_c^*}{RT}\right)$
Dorn 1955	$\dot{\varepsilon}_{\min} = A \exp\left(\frac{\sigma}{\sigma_0}\right) * \exp\left(\frac{-Q_c^*}{RT}\right)$
Johnson-Henderson-Kahn 1936	$\dot{\varepsilon}_{\min} = [A_1 \left(\frac{\sigma}{\sigma_0}\right)^{n_1} + A_2 \left(\frac{\sigma}{\sigma_0}\right)^{n_2}] * \exp\left(\frac{-Q_c^*}{RT}\right)$
Garofalo 1965	$\dot{\varepsilon}_{\min} = A \left\{ \sinh \left(\frac{\sigma}{\sigma_0} \right) \right\}_{1}^{n} \exp \left(\frac{-Q_c^*}{RT} \right)$
Wilshire 2007	$\dot{\varepsilon}_{\min} = \left[-\ln(\frac{\sigma}{\sigma_{TS}}) / k_2 \right]^{\frac{1}{\nu}} * \exp\left(\frac{-Q_c^*}{RT}\right)$

Proposed MCR Metamodel

• Metamodel (Constrained)

$$\dot{\varepsilon}_{\min} = A_1 \left(\frac{\sigma}{\sigma_o}\right)^{n_1} + A_2 \left(\frac{\sigma}{\sigma_o}\right)^{n_2} + A_3 \sinh\left(\frac{\sigma}{\sigma_o}\right)^{n_3} + A_4 \exp\left\{\left(\frac{\sigma}{\sigma_o}\right) - \alpha_o\right\}$$

• Metamodel (Pseudo-Constrained)

$$\dot{\varepsilon}_{\min} = H(x_1)A_1\left(\frac{\sigma}{\sigma_o}\right)^{n_1} + H(x_2)A_2\left(\frac{\sigma}{\sigma_o}\right)^{n_2} + H(x_3)A_3\sinh\left(\frac{\sigma}{\sigma_o}\right)^{n_3} + H(x_4)A_4\exp\left\{\left(\frac{\sigma}{\sigma_o}\right) - H(x_5)\alpha_o\right\}\right\}$$

• Temperature Dependent Metamodel (Constrained)

$$\mathcal{E}_{\min} = \left[A_1 \left(\frac{\sigma}{\sigma_o} \right)^{n_1} + A_2 \left(\frac{\sigma}{\sigma_o} \right)^{n_2} + A_3 \sinh \left(\frac{\sigma}{\sigma_o} \right)^{n_3} + A_4 \exp \left(\frac{a_1}{\sigma_o} + c\sigma - a_2 \right) + \left\{ \frac{a_3 \ln \left(\frac{\sigma}{\sigma_o} \right)}{k_2} \right\}^{\frac{1}{\nu}} \right] \times \exp \left(-\frac{Q}{RT} \right)$$

MCR Prediction for Different Models

Generated Predictions

Probabilistic Approach to Creep Modeling

Md Abir Hossain

<u>Biography</u>

- B.Sc. in Naval Architecture and Marine Engineering; Bangladesh University of Engineering and Technology, (2011-2016).
- Ph.d. in Mechanical Engineering; The University of Texas at El Paso, (Fall 2018-current)
- Worked as a Lecturer in the Department of Naval Architecture and Marine Engineering in Military Institute of Science of Technology.
- Doctoral Research Assistant at The UTEP Materials at Extreme Research Group (MERG)

List of Publication

- Hossain, M.A., and Stewart, C.M., 2019, "Reliability Prediction of Sine-Hyperbolic Creep-Damage Model using Monte Carlo Simulation Method," ASME PVP 2019, San Antonio, Texas, July 14 – 19, 2019.
- Hossain, M. A., and Stewart C.M., 2019, "Probabilistic Evaluation of 304 Stainless Steel using Sine Hyperbolic Creep-Damage Model," SETS 2019, EL Paso, TX, March 26-27, 2019.

Sources of Uncertainty

32

Sine-Hyperbolic Creep-Damage Model

The coupled creep-damage Sinh constitutive model used in this study consisting of creep strain rate and damage evolution equations are as follow

$$\varepsilon_{cr} = A \sinh\left(\frac{\sigma}{\sigma_s}\right) \exp(\lambda \omega^{3/2})$$
$$\omega = \frac{M[1 - \exp(-\phi)]}{\phi} \sinh\left(\frac{\sigma}{\sigma_t}\right)^{\chi} \exp(\phi \omega)$$

Material Constant	Behavior				
Α	Secondary Creep coefficient				
М	Accommodates temperature dependency				
σ_{s}	Mechanism Transition Stress				
$\sigma_{_t}$	Mechanism transition stress				
ϕ	Controls the trajectory				
λ	Dictates the slope of creep curves				

Uncertainty Analysis of Creep-Damage Model

- Experimental creep deformation data for 304 Stainless Steel with 10 replicated test at each temperature state was adopted from the material database.
- Sine-Hyperbolic creep-damage model has been selected for integrating the probabilistic feature because of the ease of calibration and implementation over other model.
- Different material constant present in the Sinh model were calibrated and demonstrated the intrinsic uncertainty carried by each of the material constant.
- Monte Carlo simulation was used to introduce the randomness into the model.

Material
Database
Database
Sine
Hyperbolic
Calibration
Calibration
Monte Carlo
Mothed
Wiethod

Inherent Uncertainty in Experimental Data of 304SS

Temperature	Stress	Criteria	Maximum	Minimum	% CoV
600	220	MCSR, %	0.07281	0.029988	34.57
	320	Rupture Time (hr)	63.3608	46.0542	12.55
		MCSR, %	0.025743	0.011349	34.95
	300	Rupture Time (hr)	147.439	100.002	16.12
260 650 240	200	MCSR, %	0.188527	0.108447	23.33
	260	Rupture Time (hr)	42.1296	26.8894	16.60
	240	MCSR, %	0.46198	0.017676	48.02
		Rupture Time (hr)	163.526	127.615	9.48
180 700 160	190	MCSR, %	0.056326	0.020673	43.02
	180	Rupture Time (hr)	93.1263	82.7343	4.48
	160	MCSR, %	0.008776	0.006251	12.74
		Rupture Time (hr)	196.412	156.9509	8.79

SCRI Model

Predicted Creep Deformation Curves

At 600 °C subjected to 300 MPa

At 600 °C subjected to 320 MPa

Predicted Creep Deformation Curve

At 650 °C subjected to 260 MPa

At 650 °C subjected to 240 MPa

Predicted Creep Deformation Curves

Reliability Bands for MCSR

Reliability Bands for Stress-Rupture

- Reliability bands represents whether the probabilistic evaluation is conservative or non-conservative.
- Probabilistic feature in creep-damage model will help estimate the failure of the components well in advance.
- Application of Probabilistic evaluation in the Metamodeling will be explored.
- Integration of the probabilistic modeling in the commercial FEM software will help in simulating event which might cause catastrophic failure such as failure of a turbine blade.

Market Benefits/Assessment

- Better prediction for long term service : Aid Design
- Assess the probability of failure.
- Uncertainty calibration : Repair, Replacement, Refurbishment.
- Schedule less inspection : Condition based inspection
- Replacement can be scheduled before the actual failure.

Technology-to-Market Path

- Generalized USER CREEP file for the commercial and academic use.
- Developed material database : scope to add more.
- User Material creep subroutine for the FEM software.
- Optimization of the component material behavior at extreme environment

Concluding Remarks

- Probabilistic Creep Models : Alternative to expensive testing.
- Life prediction : DOE life extension program.
- Inherent Uncertainty : Long lived FE fleets.
- Complete the ongoing and final tasks enlisted in the Project proposal.
- Guideline for the model selection : Best Model; Best Data.

Acknowledgments

Md Abir Hossain Ph.D. in Mechanical Engineering Doctoral Research Assistant mhossain9@miners.utep.edu

Calvin M. Stewart, PhD Associate Professor of Mechanical engineering Director of the Materials at Extremes Research Group cmstewart@utep.edu

Project title: A Guideline for the Assessment of Uniaxial Creep and Creep-Fatigue Data and Models The work conducted in this study is funded by a grant from the Department of energy Award Number: DE-FE0027581

QUESTION