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INTRODUCTION

High-entropy alloys (HEAs) are loosely defined as solid solution alloys that contain five or more principal
elements in equal or near equal atomic percent. The ideal configurational entropy of an equimolar solid
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solution increases with the logarithm of the total number of components in the alloy. HEAs and the more N 10 /-/ —e— geonf
broadly-defined multi-principal-element alloys (MPEAs) represent a major paradigm shift in alloy design and Agfnui’;f ) = _szi Inx; 0 L ,::_:Z%g;g,;,
are reported to have a combination of properties that include high strength, high toughness, and excellent ideal = Energy
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creep, fatigue, wear, corrosion and irradiation resistance. These properties make them attractive for use in
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extreme environments. The high-entropy concept has now been extended from structural materials to ASCoS max _ RInN -20 ) \\Q\\\-ﬂ__ﬁ‘q

ceramics, semiconductors, polymers, and a broad range of functional materials. However, configurational mx 30 medium. e"tTUPY_a”WS

entropy does not always play a dominant role in materials properties. Four proposed core effects of HEAs ASpix = 10 / high-entropy alloys
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theorized to play a role on materials performance. Number of equimolar components

NEED & APPROACH

Affordable, durable alloys for extreme environment service are needed to improve the effectiveness and efficiency of the existing fleet and enable advanced fossil energy systems. HEAs offer promise for severe
service applications, due to the potential stability of these alloys at elevated temperatures relative to conventional alloys. The aim of this project was to design, manufacture, and evaluate HEAs for elevated
temperature service and compared the results to conventional alloys and to explore extending HEA design concepts to improve the performance of conventional alloys for extreme environment service.

An integrated computational materials engineering (ICME) approach is used to accelerate design and development of high-performance structural materials. Multiscale computer modeling and simulations that
bridge various length and time scales are used, including first-principles density functional theory (DFT), molecular dynamics, Monte Carlo, dislocation theory, calculation of phase diagrams (CALPHAD), and
machine learning. Attention is paid to local atomic structures such as short range order that may impact mechanical properties. Guided by modeling and simulations, a variety of benchmark MPEAs (~7 kg — 15 Ib)
that were cast using vacuum induction melting followed by homogenization and thermo-mechanical processing. NETL alloys were produced as scales and methods that readily translate to industrial manufacturing.
The microstructure, mechanical properties, oxidation behavior and aqueous corrosion were evaluated.

RESULTS, BENEFITS, & FUTURE WORK
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Future work will be placed on further optimizing the microstructure (e.g., balancing the volume fractions of various phases (y matrix, ¥’ precipitates, MC carbides, M,,C, carbides, and other strengthening
precipitates) and thermo-mechanical processing (e.g., refining grain sizes, grain boundary engineering).
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