Phase-Field Model-bevelopment tor Plasticity/Creep

Youhal Wenza Tianle Chengab, Jefirey A. Hawk? David E. Alman?

4 National Energy Technology Laboratory, 1450 Queen Avenue SW, Albany, OR 97321, USA
0| sidos Research Support Team, 626 Cochrans Mill Rd, P.O. Box 10940sPittsburgh, PA 15236-0940, USA

INTRODUCTION

Components in fossil energy (FE) power generation devices are often subject to high temperatures for hundreds of thousands of hours. Consequently, creep is a major
concern for design of alloy toward more efficient FE applications. Common creep models are, unfortunately, largely empirical in nature. Physics-based phase-field
modeling has attracted increasing interests for its capability of modeling the kinetics of materials at microscale. In the literature, there has been models that attempt to
couple phase-field modeling with (classical) plasticity or crystal viscoplasticity. These models normally directly invoke the plasticity theories. However, they lack a unified
thermodynamic potential that governs both plastic flow and microstructure evolution. Here we develop a thermodynamically consistent crystal plasticity phase-field
framework in which the plastic strain is taken as a phase-field variable subject to the time-dependent Ginzburg-Landau equation. This way, the plasticity is fully coupled
with microstructure evolution through a common free energy functional. In addition, in this modeling framework, J, plasticity can coexist with crystal plasticity. Such a
feature is utilized to model grain boundary sliding (GBS), which is also an important mechanism for creep. In the GBS model, the grain boundary region behaves more of J,
plasticity and the bulk crystal constrained to the crystallographic slip systems (crystal plasticity). The modeling results are carefully validated against analytical solutions,
finite element solutions (M. Ashby et al.) and the FFT-EVP algorithm (R. Lebensohn et al).
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* Condition of thermodynamic equilibrium under constraint:
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 Lagrange multipliers solved to be hydrostatic pressure & negative stress
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 Applied this modeling framework to model grain boundary sliding
coupled with crystal plasticity, and the results agree with the finite
element simulations of Ashby (1975) and Ghahremani (1980) in the limit
of free GBS, and conform to the FFT-EVP result of Lebensohn (2012) in
the limit of zero GBS [2].
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3D Simulation of plasticity with/without macroscopic creep performance and underlying mechanisms at

GBS: Crystal plasticity vs J, plasticity microstructure level.
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