April 9, 2019

S. DEPARTMENT OF

Crosscutting Research Review Meeting

Advanced Sensors & Controls FWP: Raman Gas Analyzer Testing

Benjamin Chorpening, Juddha Thapa, Michael Buric

- Introduction
- Overview of R&IC Sensors & Controls research
- Raman Gas Analyzer
 - How it works
 - Recent field test results
 - Future work

R&IC Core Capabilities

APPLIED MATERIALS SCIENCE & ENGINEERING

Developing and deploying affordable, high-performance materials designed for severe service applications.

DECISION SCIENCE & ANALYSIS

Utilizing multi-scale computational approaches to provide in-depth objective analyses in support of the DOE mission.

CHEMICAL ENGINEERING

Pioneering efficient energy conversion systems that can enable sustainable fossil energy utilization.

SUBSURFACE SCIENCE

Enabling the sustainable production and use of fossil fuels through engineering of the subsurface.

SYSTEMS ENGINEERING & INTEGRATION

Accelerating technology innovation, development and deployment to enable new clean energy technologies to gain market acceptance.

Changing Role

Fossil energy power generation is needed now and in the future, **but its role is shifting** from baseload operation to fulfilling **dispatchable power** needs in regions of the United States.

Novel sensors and controls will help to **increase efficiency**, **minimize emissions**, and **reduce operating costs** of existing power generation technologies under this increased load following role; and help enable next generation power systems with high efficiency and greater operational flexibility.

Renewables Increase Net Load Variability

NATIONAL ENERGY TECHNOLOGY LABORATORY

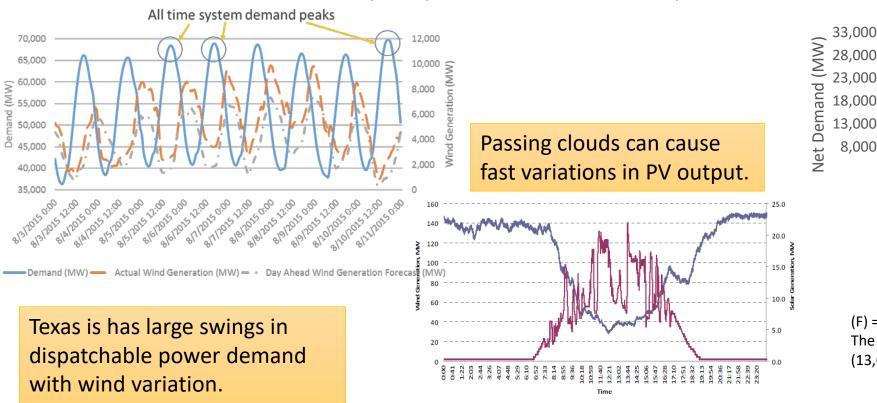
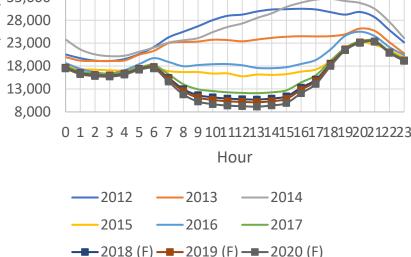
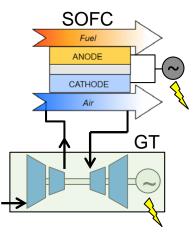



Figure 1-2: Sub-hourly wind and solar generation for a day for a 150 MW wind generator and a 24 MW Solar PV plant

2010 report by the California ISO, *Integration of Renewable Resources: Operational Requirements and Generation Fleet Capability at 20% RPS*

(F) = Forecasted

The highest level of renewable production to date for 2017 (13,664 MW) in CAISO was registered on May 26 at 1300 PDT


CAISO Duck Curve becomes more pronounced. Similar net demand curve in North Carolina.

Data Sources: ABB Velocity Suite – Hourly Generation by Fuel Type Intelligent Query , Forecast Periods developed using California Energy Demand 2016 – 2026 Adopted Forecast Mid Case Final Baseline Forecast, http://www.energy.cg.gov/2015 energypolicy/documents/index.html#gdoptedforecast

Technology Challenges

- Harsh Environments: Temperature, Pressure, Corrosive, Erosive
- Cross-Cuts Fossil Energy Power Generation & Systems
- Advanced S&C: cost effective implementation in existing plants, and enabling performance of Advanced Energy Systems

Hybrid systems

- 800°C in fuel cell
- 1500°C in GT
- Meas. Challenges
- T and H₂ dist in SOFC
- Transient control

REMS

- Radically engineered modular systems for gasification
- 1100 1500°C
- Meas. Challenges
- Multipoint temp
- Species
- NDE of adv. manuf. components
- Multiphase flow

Coal-fired Boilers

- Steam 1110°F (600°C), 4000 psig
- Fire side 2500°F (1370°C) +
- Ash / slag / SOx
- Meas. Challenges (*cycling)
- Tube temperatures / flow Corrosion/erosion/exfoliation
- Steam chemistry
- Coal particle size
- Temperature / species dist.

Chemical Looping

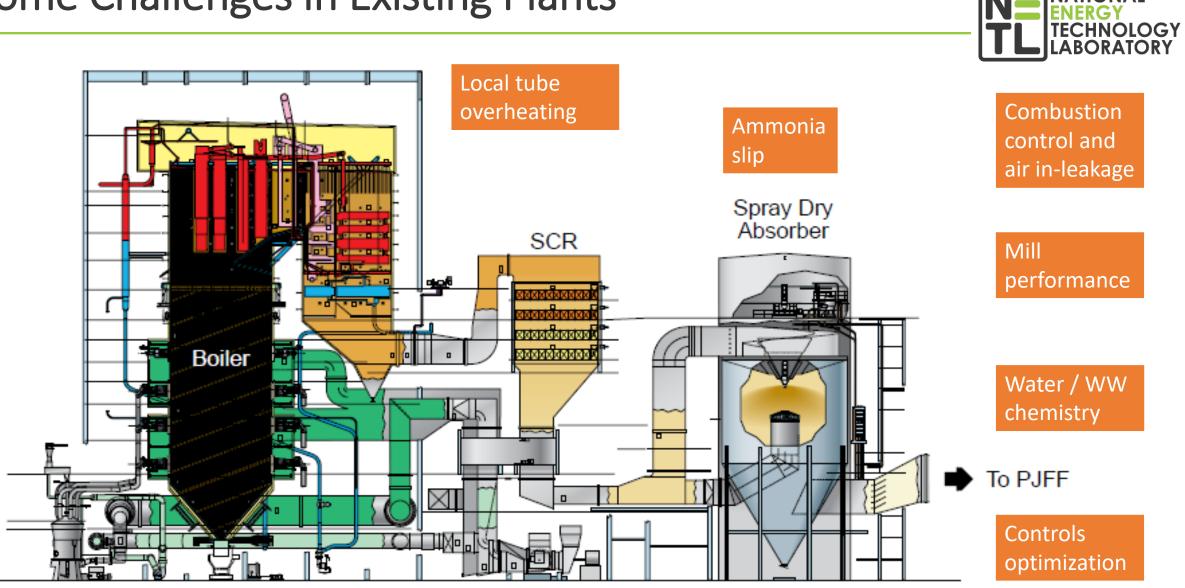
- > 1000°C
 - Pressurized Oxidation state

Meas. Challenges


Solids circulation

Erosive • Multipoint temp

Subterranean chemistry monitoring


- High pressure brine Meas. Challenges
- Salts in water
- Wellhead measurement
- Downhole measurement

6

Some Challenges in Existing Plants

Cross-section of John W. Turk Jr. USC Plant. Courtesy of Babcock & Wilcox. All rights reserved.

NATIONAL

Overview of R&IC Research in Sensors & Controls

Sensors and Instrumentation

- High temperature optical fiber sensors
- Embedding of optical fibers in metal parts
- LIBS
- Raman gas analysis
- Solids circulation rate

• Controls

- Real time hybrid system control for load following
- Agent-based controls
- Control strategies for sCO2 systems
- Techno-Economic Analysis

Optical Fiber Sensing for Harsh Fossil Energy Applications

125µm

lindoe

Au / SiO₂ Coated

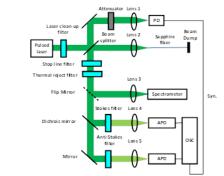
Sensing Element

100un

Functional

LHPG system

nanomaterials

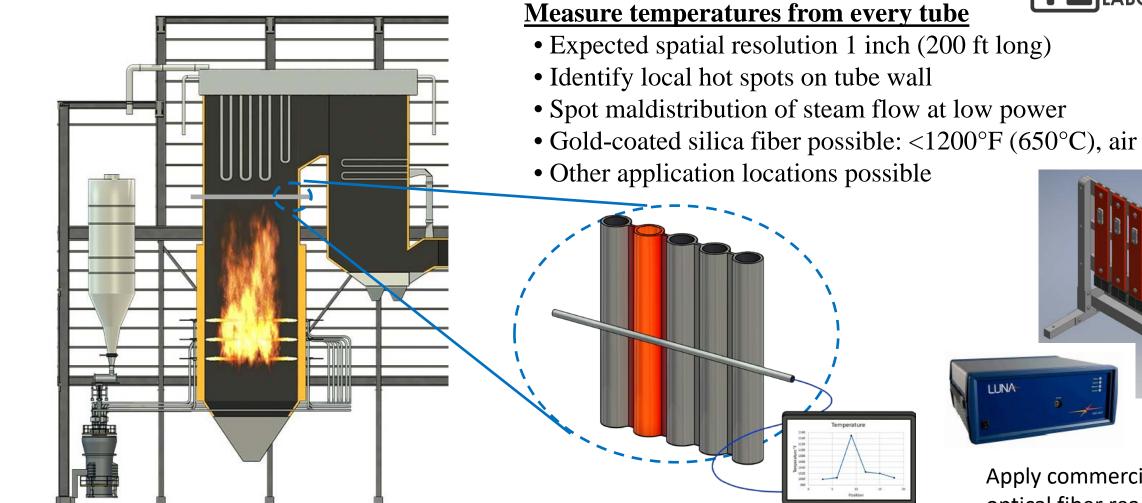

THOR

Pls: Paul Ohodnicki, Michael Buric, Yuhua Duan

Developing materials and sensing approaches to develop a fiber-based sensing concepts that can provide spatially resolved chemical species and temperature measurements from an optical fiber at above 800°C

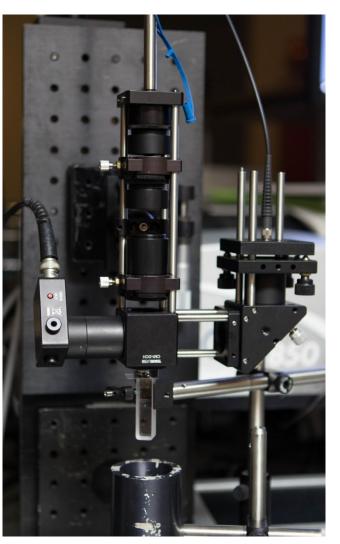
> Atomic level material

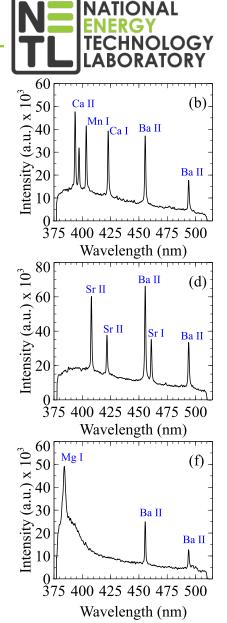
Commercial and novel multipoint interrogation


High Temperature Reactors

Multipoint Boiler Tube Temperature Monitoring

Apply commercial optical fiber readout instrument (silica fiber)


11


LIBS for Subsurface & Wastewater Chemical Measurement

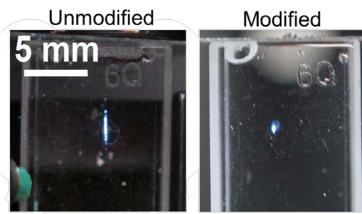
PI: Dustin McIntyre

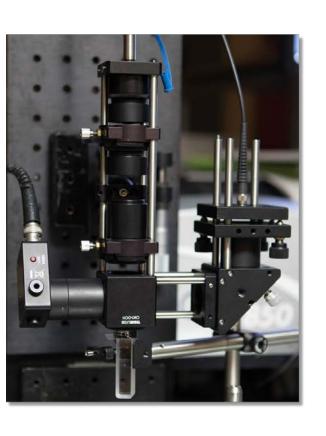
- Demonstrated concurrent LIBS sensing of Ca²⁺, Mg²⁺, Mn²⁺, Sr²⁺ as a function of CO₂ pressure up to 400 bar on the lab bench, from chloride solutions
 - An important step toward in-situ subterranean measurements of carbonate dissolution.
 - 400 bar (5900 psia) spectra at right
- Constructed proof-of-concept split laser LIBS system prototype to test key custom components
 - Step toward field use system
 - TCF with Applied Spectra to help commercialize

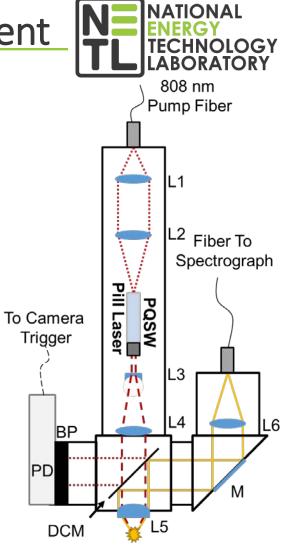
Woodruff, S.D., McIntyre, D.L., Jain, J.C., "A method and device for remotely monitoring an area using a low peak power optical pump," U.S. Patent 8,786,840 July 22, 2014. D. A. Hartzler, J.C. Jain, D. L. McIntyre, "Development of a subsurface LIBS sensor for in situ groundwater quality monitoring with applications in CO2 leak sensing in carbon sequestration," Scientific Reports, v.9, Article 4430, 2019.

12

LIBS for Subsurface & Wastewater Chemical Measurement

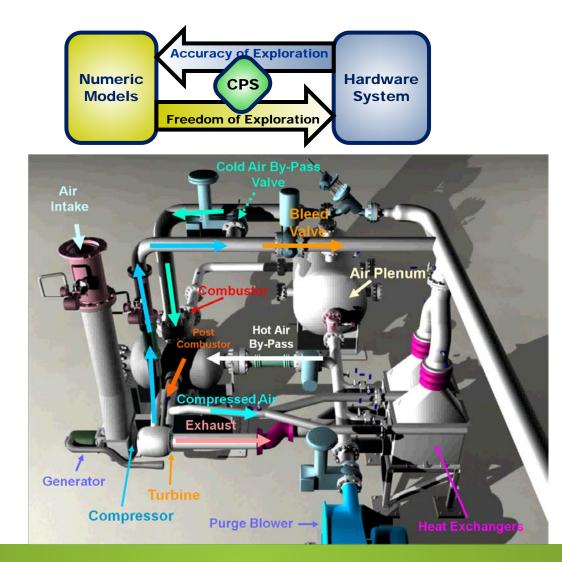

PI: Dustin McIntyre


Technical Progress:


- Online LIBS measurements were taken during exposure of synthetic rock (contained Ca, Mg, Sr, and Mn) to high pressure carbonated water over several days
- Online LIBS measurements taken during exposure of Mt. Simon sandstone to high pressure carbonated water over several days.
- Optics tested and optimized

Outlook:

- Fabrication and initial validation of watertight prototype
- Planning for initial field testing


See poster tonight for more information

Advanced Controls: Agent Based Controls for Power Systems

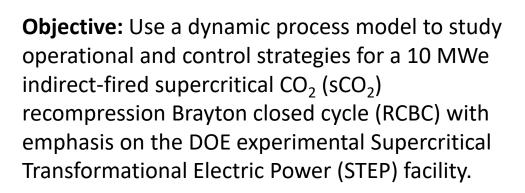
PI: David Tucker

Development and testing of advanced controls for highlycoupled advanced power generation systems which are often plagued with non-linear actuator response

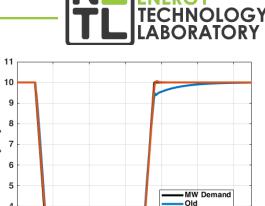
- Applying cyberphysical systems to reduce the risk and cost of control system development
- Real APU gas turbine and system volume exhibits complex dynamic behavior
- Team has destroyed hundreds of *virtual* SOFCs, in transient testing of hybrid fuelcell turbine systems

Technical Progress: Wpr Discussed previous NETL control studies and future interests with STEP development team (GTI, SwRI, GE)

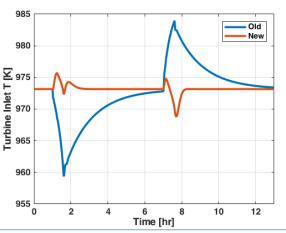
Primary


- Implemented turbine inlet temperature control by manipulating external combustor and load setpoint tracking using inventory management control.
- Investigated cooler exit CO₂ temperature control. Details to be presented at ASME Turbo Expo conference[†]

In Progress/Future Work:


- Update model with current STEP design data (e.g. equipment sizes)
- Simple Cycle model (first year of STEP operation will be in a Simple Cycle configuration)

patra, P., and Jiang, Y., "Modeling and Control of a Supercritical CO2 Water Cooler in an Indirect-fired 10 MWe Recompression Brayton Cycle near To be presented at the ASME Turbo Expo, Phoenix, Arizona, June 17-21, 2019


Advanced Controls: Control Strategies for a 10 MW sCO2 Power System **PI: Eric Liese**

Heater Mair Compressor High Q QLTR Temperature Temperature Recuperator Turbine Recuperator Work [MW] W_{MC} W. Bypass Compresso

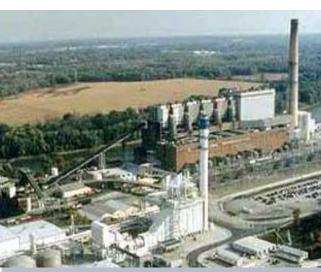
10

Time [hr]

۰

Figures: Updated control improves Work and Turbine Inlet Temperature setpoint tracking

Fast Raman Gas Analyzer



- How it works
- Recent field test results
- Future work

Benefit of Fuel Gas Analysis: Maximizing Efficiency and Minimizing Emissions

- Natural gas: 85-95% CH₄, 3-8% C₂H₆, <7% C₃H₈
 - Liquefied Natural Gas: Similar, but ratio varies during vaporization
 - Variations randomly fluctuate in pipeline because of season, source, and temperature driven fuel dropout
- Coal-derived syngas and biogas: H_2 , CO, CO₂, H_2O , CH_4 , N_2 , ...
- Turbines and reciprocating engines
 - Fuel composition affects efficiency and pollutant emissions
 - Flame temperature and optimal fuel/air ratio
 - Fuel composition affects operation and maintenance costs
 - Flame speed and combustion stability
 - Optimal control requires ~ 1 sec, better than 1% measurement

Current, Conventional Technology

Column oven

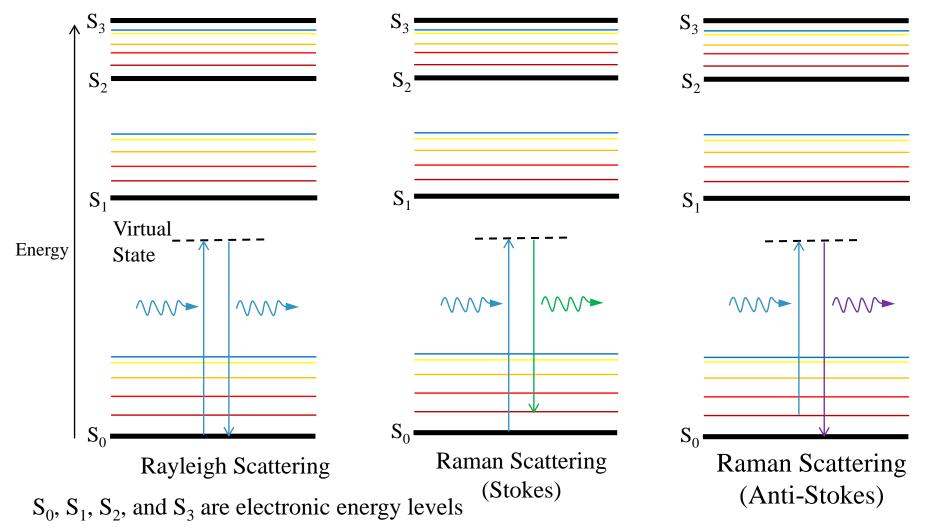
Carrier gas

Detector

	Gas Chromatography	Mass Spectrometry	Conv. Raman Spectroscopy
Method	Separates based on affinities for adsorbent and a carrier gas – used in conjunction with a detector	Electron beam ionizes particles that get placed in a magnetic field – velocity of components reveals identity	Electromagnetic radiation is scattered by collisions with molecules – each species produces a specific shift
Use	Identification & quantification	Identification & structure	Identification & quantification
Read-Out Time	Minutes	Real time, if only one mass	About a minute
Results	Gas chromatograph	Mass spectrum	Raman spectrum
Limitations	Retention time overlap. Molecule interactions. Frequent recalibration.	Vacuum required for ions. Resolution of same-mass species	Weak signal in gases. Fits results to 100%
Advancements	Multidimensional GC	GC-MS	In progress
	Flow controller	Magnet	Spectrometer

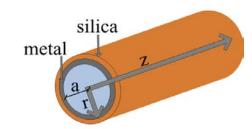
Accelerating Region

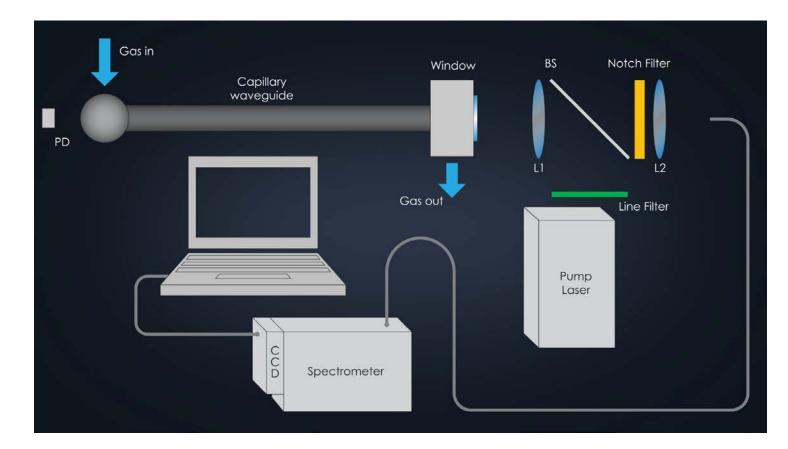
Ion Source


Detector

Notch filter

Principle of Raman Spectroscopy

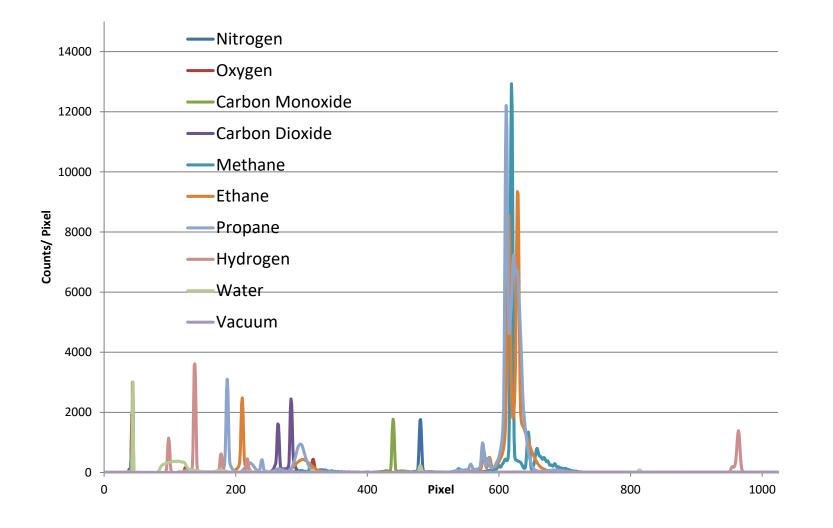




Waveguide Enhanced Raman System

- **SPEED**: One-second response time
- ACCURACY: Sub-percent for all species with little cross sensitivity
- **SIMPLICITY/STABILITY**: Obtains all species at once with no tunable lasers, no pump power control

Novel configuration with capillary waveguide enables speed and accuracy. US Patent 8,674,306, NETL and University of Pittsburgh

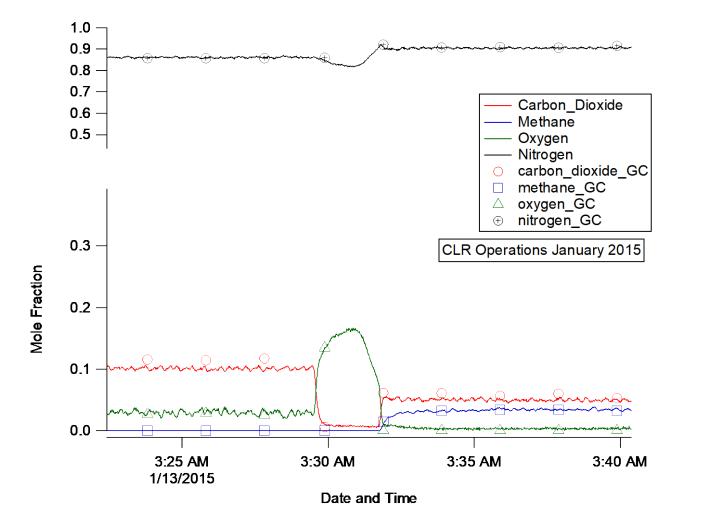


Raman Spectroscopy of Gases

NATIONAL ENERGY TECHNOLOGY LABORATORY

All major species simultaneously (no noble gases)

Measures difficult gases: H₂, N₂, O₂ (they have no IR transitions)


Easily distinguishes CO from N₂ (difficult for mass spectrometer)

Operates at process pressure

Example Application: Chemical Looping Fuel Reactor Gas Monitoring



Much faster response than gas chromatograph (GC) enables smarter process control

B. Chorpening, M. Buric, S. Woodruff,
J. Weber, and D. Straub. 2015,
"Raman gas analysis for chemical looping," AIChE Annual Meeting, Nov.
11, 2015, Salt Lake City

Example Measurements (Hyper turbine)

NET NATIONAL ENERGY TECHNOLOGY LABORATORY

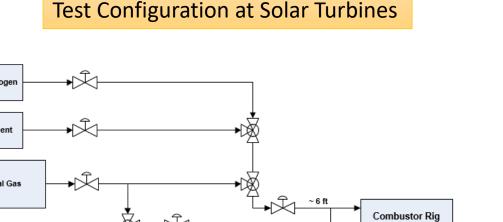
Fuel mixing measured in real time; turbine shaft speed affected

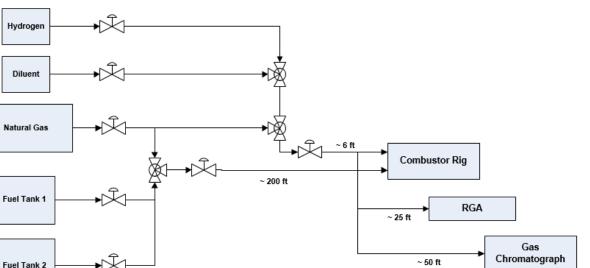
Nitrogen blended into fuel for test; manual time sync between computers

M. Buric, S. Woodruff, B. Chorpening, D. Tucker., "Fuel flexibility via real-time Raman fuel-gas analysis for turbine system control", Proceedings of SPIE Vol. 9482, 94820S (2015) SPIE Digital Library

Status/Accomplishments

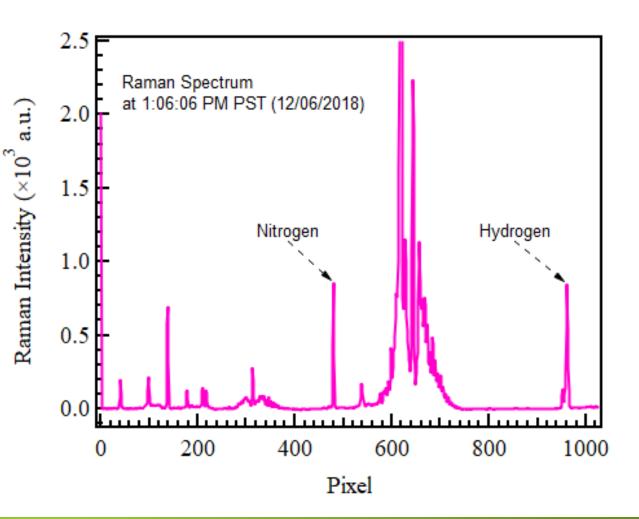
• Status


- US Patent 8,674,306, U. of Pittsburgh and NETL – Available to License
- Labview-based Software
- Field prototype constructed and operated
 - NEC Class 1 Division 2 compatible
 - Operated at NCCC
 - Operated at NETL Hyper
 - Operated at NETL High pressure combustion facility
 - Operated at NETL Chemical Looping Reactor
- CRADA with Oxergy, Inc. on specific application (non-exclusive)
- CRADA with Solar Turbines, field testing


	NOLECULAR	MOLE FRACTION	P	
SPECIES	MOLECULAR FORMULA	X(i)	Strip Chart Spectra	
Nitrogen	N2	0.963596	2000 1900 1800	
Oxygen	O2	0.000000	1700	
Carbon Monoxide	СО	0.000000	1400	
Carbon Dioxide	CO2	0.000000	1100 9 1000	
Methane	CH4	0.000000	800	
Ethane	C2H6	0.000000	600 - 500 - 400 -	
Propane	C3H8	0.000000	300	Alexander and the second second
Hydrogen	H2	0.036293	100 0 -100 -250 0 250	500 750 1000 1250 1300 1750 2000 2250 2500 2750 3000 3250 3750 4000 4250
Butane	C4H10	0.000000	Raw Backgroun	Aman Shift (cnr-1)
Water	H2O	0.000111	Backgroun Final Corre Calculated	ected Calculated 3663 -3,86911
(1	2) United Falk et a	d States Pa	tent	(10) Patent No.: US 8,674,306 B2 (45) Date of Patent: Mar. 18, 2014
(5	(54) GAS SENSING SYSTEM EMPLOYING RAMAN SCATTERING			5,521,703 A 5/1996 Mitchell 7,327,928 B2 2/2008 Shaw et al. 2006/0038990 A1* 2/2006 Habib et al
7)	,	Joel Falk, Pittsburgh, Kevin Chen, Wexford Michael Paul Buric, J (US); Steven D. Wood Morgantown, WV (US)	, PA (US); Pittsburgh, PA Iruff,	2007/00/20144 A1 10/2008 Dire et al. 2008/00/59234 A1 3/2009 Dreyer et al. 2009/00/202308 A1 5/2009 Dong et al. 2009/02/2008 A1 5/2009 Dong et al. 2009/02/2008 A1 10/2009 Chen et al. 2009/02/2008 A1 10/2009 Chen et al. 2010/0007876 A1 1/2010 Chen et al. 2012/0105827 A1 5/2012 Carter et al.
(7		University of Pittsbur Commonwealth Syste Education, Pittsburgh	em of Higher	OTHER PUBLICATIONS J. Kiefer, T Seeger, S Steuer, S Schorsch, M C Weikl, A Leipertz,

RGA Field Test at Solar Turbines Operation with Pressurized Natural Gas Blends

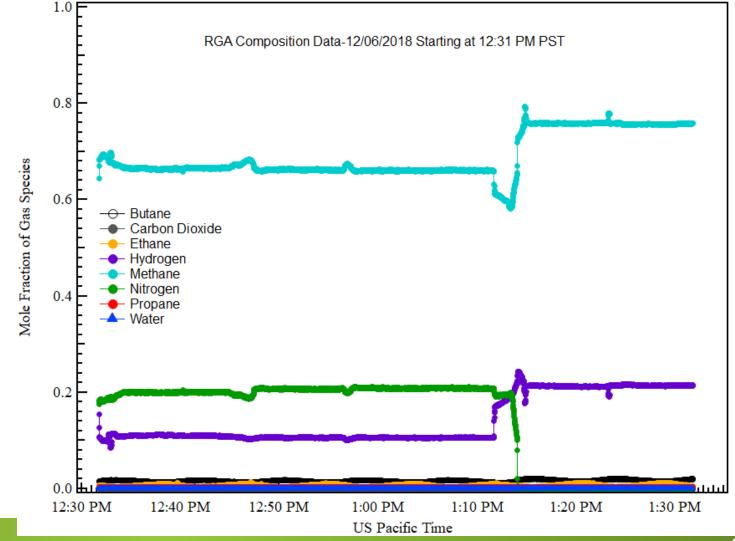
- Blends of San Diego natural gas with other gases to vary composition
- RGA connected near combustor fuel inlet
- Pressure varied, up to 185 psig inlet
- Limited to non-condensing mixtures at 50 C



Results of Steady Condition Natural Gas with 10% Hydrogen

Gas species	Flow Meter Measurement (% vol)	GC (% vol)	RGA (% vol)
Natural Gas	69.207		
a. Methane (CH ₄)		65.227	66.1061
a. Ethane (C ₂ H ₆)	0	2.793	0.5522
a. Propane (C ₃ H ₈)	0	0.293	0.2678
a. n-Butane (C₄H₁₀)	0	0.045	1.6464
a. i-Butane (C ₄ H ₁₀)	-	0.028	NC
Nitrogen (N ₂)	20.570	21.073	20.8547
Carbon Dioxide (CO ₂)	0	0.505	0
Hydrogen (H ₂)	10.223	10.015	10.5728
Wobbe (BTU/scf)		847.3	959.7

Wobbe calculated from LHV



Transient Response Natural Gas with Hydrogen

- RGA shows fast detection of composition changes
- GC samples took 6 minutes to report

Results & Future Work

• Potential benefits demonstrated

- Fast response
- Pressurized operation
- Challenges
 - System durability
 - Shipping
 - Higher temperature operation
 - Improve hydrocarbon mixture quantification
 - Add isobutane to calibration
 - Adjust data processing

Special thanks to Solar Turbines staff Alejandro Camou, Gail Doore, and David Voss for work on the field test.

Fast Raman Gas Analyzer Summary

- Applications to **power generation** and **chemical process control**
- Prototype tested in pilot scale laboratory applications
- Fast 1 second measurement time •
- Species concentrations measured to 0.1% ۲
- Optical waveguide technology boosts Raman signal more than 1000X
- No recalibration needed in normal operation
- Seeking collaborative partners or licensees •

No commercial technology has this combination of speed, accuracy, and multi-gas capability.

US Patent 8,674,306, NETL and U. of Pittsburgh

14000 Oxygen 12000 Carbon Monoxide Carbon Dioxide _10000 Methane Ethane 8000 Counts/ 0009 Propane Hydrogen Water 4000 2000 0 200 800 Pixel 600 1000 400

Nitrogen

This research was supported by the Department of Energy, Office of Fossil Energy, under the Crosscutting Research Program.

Questions?

Benjamin.Chorpening@netl.doe.gov

This report was prepared as an account of work sponsored by an agency of the United States Government. Neither the United States Government nor any agency thereof, nor any of their employees, makes any warranty, express or implied, or assumes any legal liability or responsibility for the accuracy, completeness, or usefulness of any information, apparatus, product, or process disclosed, or represents that its use would not infringe privately owned rights. Reference therein to any specific commercial product, process, or service by trade name, trademark, manufacturer, or otherwise does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or any agency thereof. The views and opinions of authors expressed therein do not necessarily state or reflect those of the United States Government or any agency thereof.

