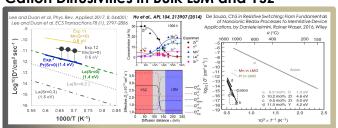
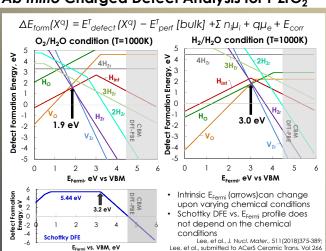
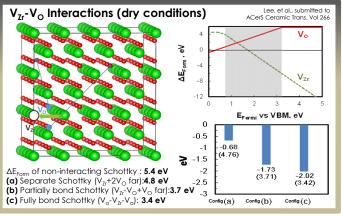

Cation Diffusion in Bulk Tetragonal ZrO₂ for Solid Oxide Fuel Cells: Effects of Defect Clusters and Hydrogen on Cation Transport

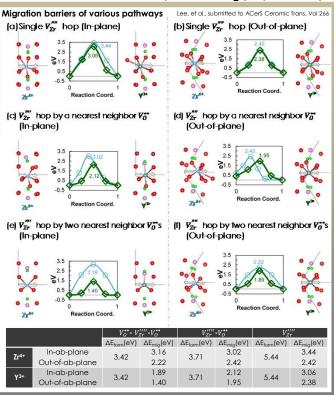
Research & **Innovation Center**

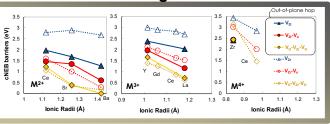


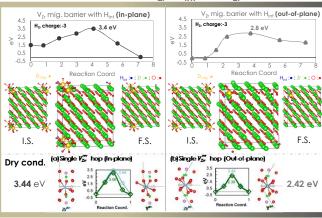
Yueh-Lin Leea, Yuhua Duana, Dane Moraana, Dan Sorescua, Harry Abernathya,c, and Greaory Hacketta aNational Energy Technology Laboratory, U.S. Department of Energy; bUniversity of Wisconsin-Madison, Madison, WI; aLeidos Research Support Team, Morgantown, WV


Motivation


Cation Diffusivities in Bulk LSM and YSZ


Ab Initio Charged Defect Analysis for t-ZrO₂


Defect Interactions in t-ZrO₂


Cation Diffusion Pathways in t-ZrO₂ (Dry Cond.)

Trends in the cation migration barriers

Zr Migration Barriers $(V_{zr}+H_{int} vs. V_{zr})$

Summary

- 1. Ab initio charged defect analysis was performed for the defect energetics of t-ZrO2 under the SOFC operating conditions:
 - Intrinsic E_{fermi} depend on chemical conditions
- Including H defects shifts intrinsic E_{termi}; H_{2r} can also be cation transport carriers.
 Strong attractive interactions (1~2 eV) found for V_{7r} and V_O (also V_{7r} and H_{int})
- 3. Partial and full bound Schottky defect clusters significantly alter cation migration barriers
- 1~2 eV difference in barriers among the V_{Zr} , V_{Zr} - V_0 , and V_0 - V_{Zr} - V_0 pathways 4. Both thermodynamic stability of transport defect complexes and the corresponding barriers for cation migration are needed from atomistic modeling for resolving cationic
- 5. Modeled activation energies of D(Zr) in t-ZrO2 and in YSZ are in the range of 6~8 eV (Exp. 6.3-6.5 eV; Kilo, Defect. Diffus. Forum, 194-199 1039-44 (2001); Chokshi, Scripta Mater., 48[6] 791-96 (2003))
- At presence of H defects
- Symmetry of migration energy landscape was broken due to interaction of H_{int} and V_{II} • Comparable migration barriers for the H trapping states (H_{7r}) vs. the dry condition
- (however, attractive interaction between V_{7r} and H_{int} may stabilize H_{7r} vs. V_{7r}+H_{int})
- Lower cation migration barriers when involving the H_{int} untrapped states

Acknowledgements

This research was supported in part by an appointment to the Nationa Energy Technology Laboratory Research Participation Program. sponsared by the U.S. Department of Energy and administered by the Oak Ridge Institute for Science and Education, Y.-L Lee and Y. Duan would like to thank Dr. Kirk Gerdes for his helpful comments to this wor

