METAL-SUPPORTED CERIA ELECTROLYTE-BASED SOFC STACK FOR SCALABLE, LOW COST, HIGH EFFICIENCY AND ROBUST STATIONARY POWER SYSTEMS

Charles Vesely – Cummins Inc Bal Dosanjh – Ceres Power Ltd

30-April-2019

Unlimited Rights Data

Agenda

- Cummins' emerging SOFC strategy
- Ceres SOFC overview and plans for scale up
- FE27844 Objectives
- 5kW and demonstrator system updates on progress
- Acknowledgements

Cummins' Market Segments aligned to Fuel Cells

Cummins Evaluation Of Data Center Applications

- Evaluation of Microsoft's vision for data centers of the future at small scale
- First phase of evaluation commenced October 2017
- Ceres and Cummins DoE demonstrator engineered for Microsoft's operational and physical targets

Ceres Power

- Unique Fuel Cell Technology
- 50 patent families
- c. 200 employees
- Fully funded with £30m order book

World leading developer of SteelCell® low cost, non combustion power generation technology

- High efficiency distributed generation
- Lowers CO2 emissions
- Improves Air Quality
- Provides energy security
- Enables EV's and balances renewables
- Uses existing fuel infrastructure today, e.g. Natural Gas, bio fuels and H2 ready

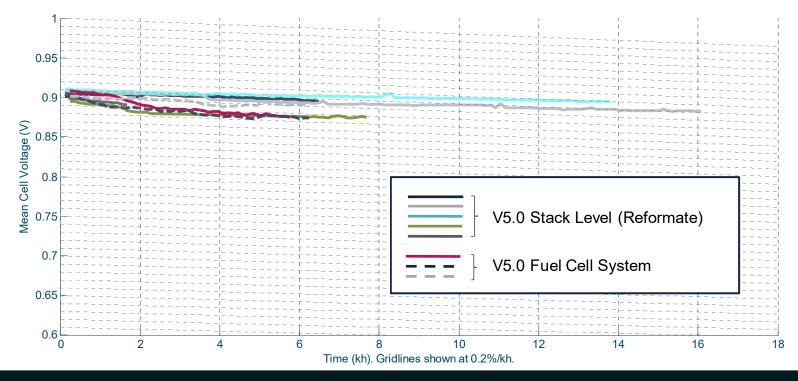
MULTIPLE DEVELOPMENT PARTNERS for MULTIPLE APPLICATIONS

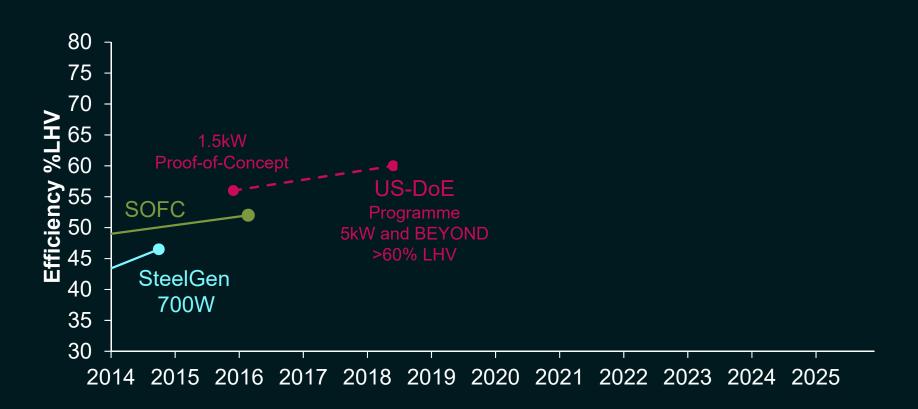
CONFIDENTIAL PARTNER 1

- European-based Global OEM co-developing multi-kW prototype for multiple applications
- Strategic collaboration buses and other China markets - targeting equity investment and JV
- Honda Power Systems several applications
- SOFC Stack to Extend Range of Electric Vehicles
- Data Centre & Commercial Scale Opportunity
- Commercial Scale CHP Development with aim to market launch

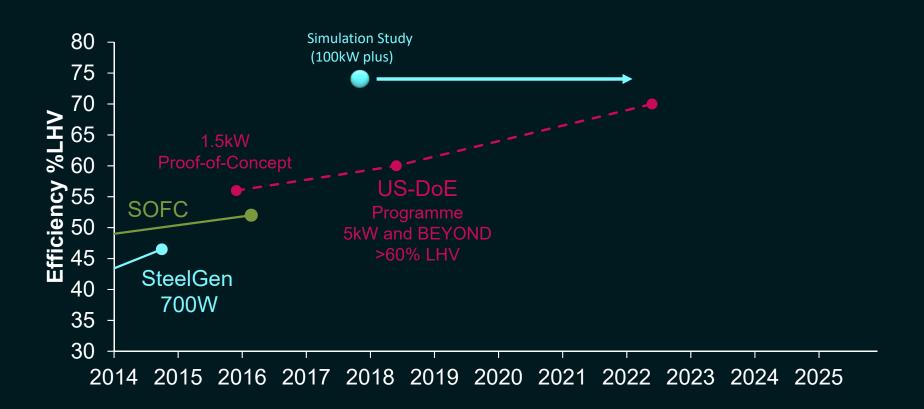
Ceres Production and Capacity Increase

- £7.5m programme for manufacturing capacity increase at Ceres:
 - To accommodate increasing customer demand
 - To demonstrate the potential for scale up and higher production rates
- First machines delivered to site, siting & connections commenced in April 2019
- Production Validation builds on schedule for Q3


Production ramp up on schedule for Q4


Steady state degradation at <0.2%

- Stacks consistently demonstrating improved degradation rates from 2018
- System degradation stabilises to ~0.2%/khr


Fuel Cell Power System – Multi-kW Prime Power

Ceres Power Ltd. © 2017

Fuel Cell Power System – Multi-kW Prime Power

FE27844 Objectives

Development o	f:
---------------------------------	----

Complete	internal luel reid	orming capabili	ty	

- Larger active cell area to achieve integrated, compact, low cost 5kW stack
- Integrated 5 kW modular stack platform scalable from 5 100kW
- 5 kW FCPS demonstrator utilizing integrated 5 kW modular stack platform
- Demonstration of:
 - 5kW FCPS performance through minimum of 1,000 hours of real-time testing:
 - Galvanostatic Degradation: <0.5%/1000hrs
 - Robustness: >10 on/off cycles; >5 emergency stops (e-stops)
- Cost modelling to show system cost of \$1,500/kW (2011 currency basis) achievable at production volumes
- Predictive modelling using demonstration test results to show system lifetime robustness capability of:
 - Galvanostatic Degradation: <0.1%/1,000hrs
 - Robustness: >2,000 on/off cycles; >60 e-stops
- Partnership with PNNL for anode poison sensitivity
- Partnership with UConn for cathode poison robustness

Complete

Complete

Complete

Dec 2018

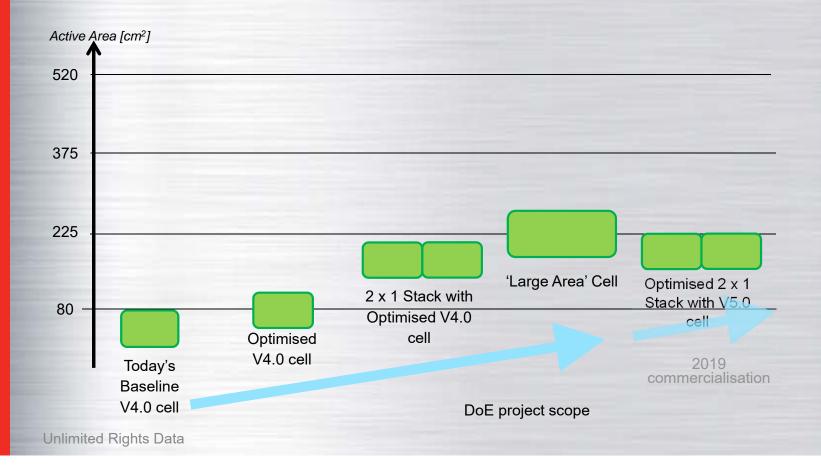
Dec 2019

Dec 2019

Jun 2019

Complete

Complete


Complete

Complete

Unlimited Rights Data

Larger Cell Area Roadmap

Ceres plans a step by step approach to deliver larger area cells

5kW Stack Builds

5kW Stacks now built and on test at Ceres Power

Scale-up to 5kW Delivers Class Leading Performance

5kW stack performance and degradation testing at Ceres in line with predictions

Performance Attribute	1kW Stack (109 cells)	5kW Stack (250 WF cells)
Power Density (W/I)	195	299 342 by end of 2019
Maximum fuel utilisation	70%	70%
Gross efficiency (@ NOC for stationary applications)	65%	65%
Hours on test	40k	3k
Degradation rate (%/1,000 hours)	<0.2%	<0.25%

DoE / Cummins Project Demonstrator

- 2 x 5kW stacks
- Data Centre compatible
- >60% electrical efficiency predicted
- Unit size : Depth 1.25m,
- Width 0.6m, Height 1.9m
- Progress made to schedule until Sep 2018
- During delivery to the UK, the demonstrator unit was damaged in transit

Demonstrator System Next Steps

- Decision to complete minimal rework, partly commission, develop SW & Controls
 - System completed c. 3 month repair and commissioning programme
- Progress made to date:
 - System fitted with a single fuel cell stack for hot commissioning
 - Stack has produced 5kW @ ~68% gross (on CH4)
 - System has exported 4.2kW @ ~59% net to the grid
 - Results are in line with predictions for single stack operation
 - System has been returned to USA for full repair and installation of 2 new stacks
- Next Steps
 - System to return to UK for final commissioning
 - Then ship to US for installation at UConn for official DoE demonstration
 - Predicted performance → 10kW net @ 60% net

Other Workpackages

- Characterisation of anode contamination by PNNL
 - This learning will influence future anode and system development activities
- Assessment of next generation cathode getter materials by UConn
 - This learning will influence future system design and development
- Cost modelling due for completion by end Q2 2019:
 - DoE rules of the road applied to System BoP costing
 - Ceres in-house long term cost down roadmap in progress

Progress & Accomplishments

- Anode poison work completed at PNNL
- Cathode poison work completed at UConn
- Demonstrator system built with PEKO Precision
- In-transit damage has impacted test program
 - Commissioning completed with single 5kW stack
 - System has exported 4.2kW @~59% net efficiency to the grid
- Demonstrator rework and stack replacement completion in Q2 2019

Next Steps

- Complete demonstrator system rebuild at PEKO Precision
- Commission demonstrator system at Ceres
- Complete demonstrator system evaluation at UConn
- Continue to develop pipeline of activities beyond end of DoE project

Acknowledgements

- The work summarized in this paper was funded by the U.S. Department of Energy's Solid Oxide Fuel Cell Program.
- NETL: Patcharin Burke, Angela Bosley, Shailesh Vora, Joseph Stoffa
- PNNL: Jeffry Stevenson
- University of Connecticut: Prabhakar Singh