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Objective/Vision: Probing High-T Chemistry in SOFC Operation

Develop an integrated sensor solution to perform direct and
simultaneous measurements of physical and chemical
parameters with S-mm spatial resolution.

* Develop high-T stable fiber sensors for
— Ultrafast laser direct writing
— High spatial resolution data enabled big-data analytics

* Sensor Materials Development and integration

— Metal oxide nanostructures
Example : Solid Oxide Fuel Cells

— Improve high-T stability and chemical reactivities Internal Gas and Temperature

— Noble and rare-earth metal doping
— 3D direct microstructuring
* Sensor Deployment and Measurement
— What do we learn?
Pakalapati, S. R., ‘A New Reduced Order Model for Solid Oxide Fuel Cells,’ Ph.D Thesis,
Department of Mechanical and Aerospace Engineering, West Virginia University,

* Energy system optimization Howanonn Y

Using data gathered by sensor to optimize design, operation, and control of Solid
oxide fuel cell energy system.



) Outlines: Team

* PI: Kevin Chen — University of Pittsburgh

— Graduate Student Researchers: Mohamed Zaghloul, Mohan Wang,
Rongtao Cao, Zhaoqgiang Peng

— Research Scientist: Dr. Guanquang Liang
* Industry Collaborator
— Watts Fuel Cell Technology

e National Lab Collaborator
— NETL: 6 fuel cell on-site tests



Ultrafast laser irradiation to enhance T/radiation
resilience and measurement accuracy

* Temperature measurements
can now be performed at 800C
with H, atmosphere

 Stability verified at 800C
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Distributed Sensors for Energy Applications

Temperature Resilience from the RT to 800C
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Measurement Repeatability better than 4C from the RT to 800C
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(&) Increasing Rayleigh Scattering Stability

* H, exposure still increases loss and scattering.

* H, induced scattering is now less than
irradiation-induced scattering.

* Cross-correlation 1s more effective with
increased scattering features that do not change
with temperature.
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(&) Temperature coefficients determined to 800 C

* 4 C accuracy with heat/reheat.

Temperature ("C)

Temperature can now be measured at 800 C
with H, atmosphere.

Stability verified for ~19 hours at 800 C.
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Distributed Inline FP sensors Enabled by fs-laser direct writing

Inline FP created by fs-laser Vibration measurements
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B 6 inline FP cavities inscribed in one fibers

B Cavities length 600 um to 1000 um

B Target temperature 400-900 C

B Capable of performing static temperatures and dynamic vibration measurements
B Inscribing in two types of fibers (RAL and F-doped core)

B Distributed temperature measurements



Hydrogen Sensing Based on Nanostructure-textured Optical Fiber

Distributed Hydrogen Sensor Based on Nano-grass at High Temperature

* Challenges:
— Avoid metal oxide sensing film collapses at high temperature
— Remain similar sensory performance

* QOur Sensor:

— Introduced Nano-grass textured optical fiber
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RIE on D-shaped fiber, Coating, Rayleigh

* Equipment: The Trion Phantom III LT RIE (Reactive Ion Etching)
* Gas: CHF; and O,
* Power 100-300 W

Nano-grass (height: 4.7 pm) D-fiber with nano-grass Rayleigh scattering
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Hydrogen Sensing Based on Nanostructure-textured Optical Fiber

Metal Oxide (HfO,) Protected Nanostructure

* Challenges:
— Nano-grass “melting” on top of the fiber core at high temperature
— Introduce HfO, coating to solve the problem

600 °C 800 °C 800 °C with HfO,
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Objective Sensing Materials: Tailoring the Refractive Indices and
Chemical Responsivity

Requirements:
— 3D Geometry (reduces unwanted anisotropy)
— A << A (reduce optical scattering loss)
— Processing on arbitrary shapes (fiber...)
— Wide tunability of refractive indices (An > 1.5)
— Reactive to a wide array of gas species
— Low cost
— High temperature stability

Options
Semiconductor Processing? Colloidal Templating? Block Copolymer Templating?
“* Doping, sputtering ¢ <50 nm \‘; Alcohol soluble
% Cost, not flexible * Structure limited > nm to 100 nm

* Limit tuning of porosity v Fl@xible structures
v Wide tuning of porosity

Xi (2007, Prof. Schubert’s group at RPI)



Sensing Materials: Co-Polymer Templating by F-127

F-127 Pluronic
* A triblock copolymer
* Highly compatible with the preferred solvents (alcohol)

* Has better higher temperature stability
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(&) Metal Oxides and Their Dopant Variants

* Metal Source: SnCl,, TiCl,, and Controlling Refractive Indices

Zn(0,CCHj;),(H,0), - TiO,: An~1.4 to 2.5
* Si Source: Tetraethyl Orthosilicate - SnO,: An~1.4 to 2.1
* Solvent: Ethanol - ZnO: An~1.25 to 2.0
* Block Copolymer: Pluronic F-127 - Si0,: An~1.2 to 1.45
 Stabilizer: HCI for most, NH,OH for Zn
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| Metal Oxides and Their Dopant Variants

TEM of TiO, SEM of ZnO SEM of SnO,




m Metal Oxide on Optical Fiber Platform

In the evanescent wave configuration

Refractive Index Matching is Critical

o o o o o o
TRRIRE

o T +11.6
2.0
dB(W/um?) BT T T ' D 11.4
I 112
Fiber Bragg Grating po— T 1.8- \ 11.0
L 17] | e 10.8 g
lo.6 =
g 16] | 0.6
Nano-Structured Layer 5 / 10.4
&l5F Jo.2
1.4- . : . . ~0.0
00 04 08 12 16 20
Film Thickness(um)
100" “A.—-——"“
0] E /1
£ 1. /
= .
0.1+ /_./‘—'—Core

 Cladding

_

—— Sensing Film

1.30 1.35 1.40 1.45 1.50 1.55
Film Index

Finite Element Simulation of the Power Distribution of the Fundamental Mode



&) Metal Oxides Enabled Chemical Sensors

* Nano-Engineered metal oxide sensory film
* Porosity control for refractive index matching
» Rare-earth or noble metal dopants for specificity
* Pd-TiO,

* Sensor can operate >700C

* No electrical components in target environment

Edge of FibéFE;;'é L



m High-Temperature Chemical Sensor on D-shaped Optical Fiber
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Fiber Optic Hydrogen Sensor at 700C

Optical Transmission vs. Hydrogen Concentrations
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Exposed to various concentrations of hydrogen in nitrogen, recovered with nitrogen
Ideal for hydrogen driven energy conversion systems



Hydrogen Sensing Based on Nanostructure-textured Optical Fiber

Hydrogen Sensor Based on Nano-cone

* Requirement:

— Fast sensory speed

— Repeatable response

— Continuous monitoring
* QOur Sensor:

— Au/Pd atomic ratio = 1.2

— Densely packed nano-cones

— Average cone size < 100 nm
— Operates from RT — 600 C




Hydrogen Sensing Based on Nanostructure-textured Optical Fiber

1. Hydrogen Sensor Based on Nano-cone: Room Temperature Results

e Results:

— Reversible response

— Thinner alloy film, better response
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M It is possible that distributed T and Chemical sensing can be achieved
with 4-mm and 1-mm spatial resolution using a single fiber.

B This sensing scheme can be used to probe other fuel cell chemistry and
other energy chemistry at high temperature (<700C)



&) Distributed T measurement in SOFC

30

25
20+

15 |

AT (°C)

10 |

5

0
-5

5.

08 510 512 514 516 518 520
Length (m)

so-(e)
sol —=—0A

——1A

40 ——2A

Excess H,
and Water

30

AT (°C)

20

10

ol =40

10 L ! 1 L ! 1
464 466 468 470 472 4.74 476
Length (m)

Temperature in cathode and anode were measured respectively
- 100% hydrogen fuel, current load 0 ~ 3 A.
- Temperature increase when fuel gas turned on
Anode : ~55 °C, Cathode: ~ 25°C
- Temperature change with different current loads < 5°C



k) Sensor-Enabled Design Optimization

B Current Fuel Cell Plates: only consider electrical properties




Sensor-Enabled Design Optimization

B Configuration optimization to improve gas fuel (then chemical reaction) to
improve the T/Chemical reactor profile in fuel cell.

Temperature (C)
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{&21) Sensor-Enabled Design Optimization

The peak of the temperature bump appears closer to the H, gas inlet,
and shifts closer to the inlet as the H, flow rate is reduced.
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&) Sensor-Enabled Design Optimization

2 A, 50 scem H, flow, 750C
30s 60s 90s

Experiments and Simulation are
’ VERY DIFFERENT....

’ Example : Solid Oxide Fuel Cells
i Internal Gas and Temperature

30s 60s 90s

© | Temperature (C)

Temperature (K)
1200 1240 1280 1320 1360

Pakalapati, S. R., ‘A New Reduced Order Model for Solid Oxide Fuel Cells,” Ph.D Thesis,
s Department of Mechanical and Aerospace Engineering, West Virginia University,
Morgantown, WV




Summary

* Fiber sensors will play greater roles in energy industry
especially in cross-cutting areas.

* Innovation in optical fiber Sensor is a truly integrated and
looping efforts from fiber, to manufacturing, to
deployment, to design optimization, and back .

* Interdisciplinary collaboration essential.

Contact:
Kevin P. Chen
Tel. +1-724-6128935 Email: pchenc@gmail.com




Thank you!

Questions?

Collaboration Welcomed!

Kevin P. Chen
Email: pec9@pitt.edu




