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= Project Information
- Motivation, objectives, technical Approaches

= Accomplishments

- Characterized electrochemical behavior of LSCF cathodes
exposed to various contaminates

- Fabricated catalyst-coated electrodes with well controlled
composition, structure, and morphology

- Probed surface species of electrodes using in operando Raman
Sspectroscopy

- Developed efficient catalysts for enhancing ORR activity and
durability

* Summary
*= Acknowledgement
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= Cathodic polarization causes significant energy loss.

= The state-of-the-art SOFC cathode materials are
susceptible to degradation due to inherent instability
and contaminants poisoning.

= Cathode durability is critical to long-term reliable
SOFC performance for commercial deployment.

= Mitigating the issues by catalyst coatings will reduce
the cost of SOFCs and help to meet both cost and
performance goals.
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Strategy to Durability

O Limit the sources of contaminants
O Reduce the exposure to contaminants: use of getters
0 The last defense: contaminant-resistant electrode

o
interconnect

i

3CF cathode
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Surface Modification

> To develop a conformal catalyst coating that may
(1) suppress Sr segregation or enrichment’2 and (2)
enhance the tolerance to contaminants

| YSZElkectoyte N\ /) vSZElectote
» The catalysts must be inherently more stable, electro-
catalytically active, yet less sensitive to contaminants

1. EES, 2011, 4, 2249; 2. AEM, 2013, 3, 1149; EES, 2014, 7,

Project Objectives

o To characterize the electrochemical behavior of LSCF exposed
to contaminants under realistic operating conditions (ROC);

o To probe the surface species/phases of LSCF cathodes exposed
to contaminants under ROC using in situ and ex situ
measurements performed on specially-designed cathodes;

o To unravel the degradation mechanism of LSCF cathodes by
correlating the changes in performance with the surface chemistry,
microstructure, and morphology under ROC;

o To establish scientific basis for rational design of new
catalysts of high tolerance to contaminants;

o To validate the long term stability of modified LSCF cathodes
in commercially available cells under ROC.
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Tasks and Schedule

Task 1: Project Management and Planning

Task 2: Charactering the EC Behavior of Catalyst-Coated LSCF under Realistic Conditions
Task 3: Understanding the Mechanism of Contamination Tolerance

Task 4: Development of Low-cost and Applicable Deposition Techniques for Cathode

Task 5: Development of Catalyst Coating on Porous Cathodes of Large Commercial Cells
Task 6: Verification of Catalyst Coating in a Subscale Stacks of Fuel Cell Energy

FY2017 FY2018 FY2019
Task

Q4 | Q1 [ Q2 | Q3 | Q4 | Q1 | Q2 | Q3

—
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Symmetric and Model Cells
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+ Symmetrical cells of porous LSCF cathode with 2-electrode configuration to
determine the sensitivity of cathode performance to the type and
concentration of contaminants (S, B and Cr) under various testing conditions

+ Model Cells with thin-film dense LSCF electrode to facilitate the interface
analysis and correlate the degradation mechanism with the geometric
factors, revealing the major path of surface reaction on the cathodes




Electrochemical Testing

Heating

element Cathode
Single cell
Al,Oy RN T
tube

Quartz tube —

Sealant <

Full cell

Symmetrical/model cell

O Oxidant composition can be well controlled;
O Contamination can be introduced easily.
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ORR Activity of Catalyst-infiltrated LSCF
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Distribution of Relaxation Time (DRT)
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Q DRT is a powerful tool for deconvoluting the impedance data of the complex

ORR reactions, helping us to separate or isolate some of the key steps involved

in the electrode reactions.
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DRT of Catalyst-Cpated LSCF
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O DRT is a powerful tool for deconvoluting the impedance data of the complex

ORR reactions, helping us to separate or isolate some of the key steps involved

in the electrode reactions.
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Raman Spectroscopy

Raman shift = o,
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« Inelastic scattering of light due to
interaction with vibration modes

« Energy of photon changes after

pAN interaction, shifting the frequency of

— the scattered light.

* In situ compatable
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Accomplishments and Progress

+~ Characterized electrochemical behavior of LSCF

cathodes exposed to contaminates (such as Cr, SO,, CO,
and B) under ROC;

+ ldentified some efficient catalysts for enhancing ORR

activity and durability;

+~ Fabricated model cells with a thin-film LSCF electrode

and characterized the model cells (w/o catalyst) in
different contaminants;

+« Probed surface species of LSCF using in operando

SERS; and

« Developed the low-cost and applicable deposition

techniques for large cathodes (~1 inch diameter).
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Accomplishments and Progress

+» Characterized electrochemical behavior of LSCF

cathodes exposed to contaminates (such as Cr, SO,, CO,
and B) under ROC;
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Performance of LSCF

exposed to different contaminants

* Cr, B, or S alone can cause severe LSCF degradation
*» Combination of contaminants exacerbates the degradation effect
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Accomplishments and Progress

+ ldentified some efficient catalysts for
enhancing ORR activity and durability;
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Schematics of a

conformal PNM coating with

exsoluted PrOx nano-particles

Cathode

Electrolyte

Fuel cell

Chen. et al., Energy Environ. Sci. 2017, 10, 964.

Conformal PNM coating Nanoparticles
(PrNig sMng 505) (Pro,)

Cathode structure
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Candidate Catalyst Materials

Exsoluted
/ Nanoparticles

v

1

o ProO,
o Smg,Ce; 30, (SDC)
Catalytically active and stable!

— Conformal coating:

QSm, ;Sr, €00, (SSC)
QPrBa, Ca,Co,0;,, (PBCC)
QPr,Ni, ;Mn, ;0,., (PNM)
UBa,Co,0, (BCO)
QPr,Co,0, (PCO)
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Morphology/composition evolution of po

(a) Before test (b) ~110h

(c) ~300h ‘M(d) ~s00h

performance enhancement.

More PrOx particles exsolved overtime, leading to
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Micro-analysis of PNM-LSCF
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A high-resolution TEM image showing two PrOx
particles on a conformal PNM coating deposited .

on an LSCF grain. The insets are the FFT patterns composition
from the nanoparticles (point 1) and the conformal PrNi; sMn, ;05;
PNM coatings (point 2); and the EELS spectra ©
from point 1 and 2, suggesting that the
nanoparticles are mainly PrOx (point 1) while the
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o PNM is a composite with possible

LSCF was covered by a conformal
coating and exsoluted nanoparticles;

conformal coating is PNM (point 2). Energy Environ. Sci. 2017, 10, 964.

20/ degree

of PrO, and
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Electrochemical performance of catalyst coated-LSCF

Catalysts

0 PNM shows best performance (activity and durability) among catalysts we studied;
o PrOx facilitated the surface exchange process; PrNi, sMn, ;O; enhance durability.
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Surface coating to enhance durability:

Experimental condition
* Temperature: 750 °C

Z (acm?)

alloy;

% Catalyst of PBCC or PrOx can enhance the durability.

+ Blank LSCF shows significant degradation when exposed to Cr
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Surface coating to enhance durability:

Experimental condition
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Surface coating to enhance durability:

Experimental condition
+ Temperature: 750 °C

+ Contaminants: B,0; 0.8 : : : :
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Increased activity and durability by surface modification
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@ PBCC, PNM, and PrO, coating significantly v LSCFISDCILSCF
reduced the Rp of cathode; v SDC: dry-pressed & fired at 1450°C
@ PBCC-LSCF  cathode showed remarkable ; LSCF on SDC, fired at 1080°C/2h
tolerance to Cr, B,O,, and improved tolerance to P Rp_' fr_°m EIS of cells at 0(_:V
SO, in contrast to the bare LSCF or PrOx-LSCF; v cr: P'red contact in dry air
S0,: 27 ppm in air
€ PBCC- and NBCC-infiltrated LSCF cathodes v' B: on the edge of SDC pellet
showed better tolerance and resistance to
combinations of Cr, B,0,, and SO,. 28
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Accomplishments and Progress

« Fabricated model cells with a thin-film LSCF electrode
and characterized the model cells (w/o catalyst) in

different contaminants;

29
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Thin-film electrodes
Catalyst coatings 35 -
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degradation rate increases with £ 10 = sz
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PBCC: excellent CO, tolerance

Energy Environ. Sci., 11 (2018) 2458.
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+ LSCF or PBCC showed degradation in air with different concentration of
CO,: higher cause faster degradation;

« However, PBCC remains active in air with CO, up to 5%.
31
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Probing surfaces by In situ SERS

Energy Environ. Sci., 11 (2018) 2458.

* Model cells: LSCF thin
film on YSZ single

Gasin =~
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b. The surface species of CO, poisoning are carbonate, as indicated from the

Raman spectra.
c,d. - LSCF showed faster degradation than PBCC in air with 10% CO,:

rougher surface compared with PBCC; 3

32
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quelop_ment of Iow-co_s’g and applicable
Thin-Film deposition Process

Surface Sol Gel Process

v' Layer by layer growth via two
alternating self limiting
reactions:

1. Metal alkoxide reacts with
hydroxyl groups on surface

2. Hydrolysis via water to form
oxide

3. Repeat for n cycles

v" Achieves highly conformal
coating

v" Precise thickness control

v Low cost compared to ALD

Ba(0C3H,), + H,0 — HOBa(0C;H,) + C;H,0H

>—OBaO—< H,0

O O OH OH
(I I 1
Ba?*Ba?* Ba%*Ba2* BaO
11 I 1
OH OH O O O O

I (I (|
e W e W e d i

Plasma Activated  Introduce Barium  Hydrolysis of
LSCF Surface isopropoxide in IPA isopropoxide via

water

Repeat for n cycles
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Coatings from Surface Sol-Gel
Rp of bare LSCF and LSCF coated with catalyst derived from a surface sol-gel process
0-16 B Bare1 B Bare2
014l ™ 890 15ey 1 W Baotsey2 | 120 C LSCF | SDC | LSCF
n oo Eoir?, . ™  SDC: dry-pressed & fired at
012 PrOx 30cy 3 1450°C;
. - ]
" - LSCF on SDC, fired at
E 0.10- - = 1080°C/2h;
& " Catalysts: from surface sol-
Soo| " - gel;
- " Rp: from EIS of cells at
0.06 4 _mif OCV acquired at 750°C.
.
] T ] - mt
0.04 1 ; " i am ot
[ ]
0.02 T T T T T T

U Surface sol-gel has better control over morphology & thickness.
U Catalyst-coated cathode showed higher activity and stability.
U The effect is similar to that of solution infiltration.
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SERS; and

Accomplishments and Progress

- Probed surface species of LSCF using in operando

35
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Cr-containing

cubic perovskite:
vibration modes
has no Raman
activity

IR

Degradatlon

Structural
degradation
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Raman
spectroscopic
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Effects of Cr on LSCF Raman spectra

The Cr-containing vapor reacts with
A-site element (Sr)
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B o formed
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@ Electrified interface

SrCrO, concentrates on LSCF-GDC boundary
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» a: Cr poisoning was studied in two modes:

direct and indirect contact;

b: Raman spectra indicated that SrCrO,
concentrates mainly on boundary;

c: Water exacerbated the formation of SrCrO,;
d,e,f: bias exacerbated formation of SrCrO,.
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GDC dry-pressed & fired at 1450°C
LSCF: RF sputtered

Cr: Direct or indirect contact in wet air
Bias: 1.5V

in situ Raman at 550°C
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Quantitative correlation: Raman and EIS
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¢ Developed an effective strategy (in
operando characterization and computation)
for enhancing the tolerance to contaminants
poisoning of electrodes

®1dentified a number of new catalysts with
high electro-catalytic activity and excellent
durability for surface modification of electrode,
demonstrating better tolerance to H,O, CO,, Cr,
B,0, and SO,.
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