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Datacenter Market Size and Key 
Requirements
• $18.5 billion global market (2018)

• Expected to grow to $32 billion by 2023

• 9.04% compound annual growth rate (CAGR)

• $6 billion market in the US alone

• Representing 2-3% of the total energy consumption in the US and 
Canada

Keys requirements: reliability, efficiency, cost and load following



The Challenges  
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Di Wang, “Co-optimization of data center loads and fuel cell systems”, MSFT-UW Fuel Cell Workshop, 

January 2017.
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Can Conventional SOFCs Be Applied for 
Datacenters?

• Designed for baseload power applications at constant fuel and air 
utilizations 

• Poor overload tolerance – causing local fuel starvation, Ni-oxidation 
and cracks in anode

• Slow fuel supply response system – mass flow controller

• Lack of robust control algorithms 



The Fe-Bed SOFC Technology

Energy & Environmental Science, 4 (2011), 4942; 9 (2016), 3746 – 3753 



Robust Performance

Energy & Environmental Science, 9 (2016), 3746 – 3753 



Remaining Issues
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Project Objective(s)

• Overarching objective: to develop a new generation of 
dynamic SOFC system operated on NG for datacenter 
applications
✓Primary objective -1: to develop robust metal-bed 

design and compositions
✓Primary objective -2: to demonstrate the new cell 

technology at pilot-scale



Optimizing Fe/ZrO2 Ratio
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TPR/TPO Study
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Segmented Bed Design
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FeCoOx-ZrO2 Phases

Oxide form Alloy form



TPR @ Different Ramping Rates

Fe:Co = 80:20

10



Studying FeCoOx Reduction Kinetics by TPR
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TPO/TPR Alternate 50 Cycles 



Oxygen Concentration Cells: Measuring aFe
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YSZ Electrolyte
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Fe-Activity in Fe-Co Alloys
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Raoult's law

EMF vs T aFe vs XFe



Conclusions 

• Fe2O3:ZrO2 molar ratio can be increased to 9:1

• Adding Co into Fe makes Fe(Co)Ox reduction easier

• It is also confirmed for Fe-Co alloys that aFe < 1 at XCo< 0.4, above 
which aFe > 1 below 700 oC
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Next Steps 

• Finishing EMF study for all Fe-Co alloys 

• Expanding EMF study to Fe-Ni alloys

• Down selecting Fe-X compositions for pilot-scale testing at Atrex

• DOE NETL for supporting this work under award DE-FE-0031671

• Dr. Diane Madden is the project manager and Dr. Shailesh Vora is the 
program director
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A New Isostructural Bilayer Cathode 
Tolerant to Cr



A New Isostructural Bilayer Cathode 
Tolerant to H2O and CO2
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