ADVANCED MEMBRANES LOWER THE COST OF CARBON CAPTURE

Highly permeable and selective membranes for post-combustion capture

HIGH-PERFORMING MIXED MATRIX MEMBRANES (MMMs)

Developing stable, transformational membranes with high CO₂ selectivity and permeability can **significantly reduce the cost for postcombustion capture.** Membranes with higher permeability lead to a **reduced area requirement, smaller capital cost, and a smaller equipment footprint.**

A mixed matrix membrane (MMM) consists of a polymer matrix with particles such as metal organic frameworks (MOFs) embedded in the matrix to enhance gas transport. The best MMMs for CO₂ capture need high performance polymers with mechanical toughness, nanosized MOFs with uniform dispersion, an optimized support layer, and a thin, defect-free selective layer.

QUICK FACTS

AWARD NUMBER FWP-1022402

PROJECT BUDGET

FY18 VALUE **\$326,000**

PROMISING OPTION FOR LARGE-SCALE GAS SEPARATION

NETL's membrane flue gas test unit at the National Carbon Capture Center, where membranes are being tested for long-term stability under real conditions including moisture and contaminants

NETL analyses have shown that materials with extremely high permeability are needed to

make membrane technology an economically viable option.

NETL is developing **innovative technologies and materials for bench-scale testing** in a

slipstream of actual flue gas. NETL is currently working with a commercial membrane manufacturer to scale up this technology for demonstration in a small hollow fiber module. The chart shows the total cost of carbon capture for different hypothetical MOFs paired with one particular polymer as a function of the properties of the MOFs. Compared to a pure polymer, MMMs can dramatically reduce the cost of carbon capture (CCC).

CONTACTS

HQ PROGRAM MANAGER JOHN LITYNSKI

TECHNOLOGY MANAGER

TECHNICAL PORTFOLIO LEAD DAVID HOPKINSON

PRINCIPAL INVESTIGATORS DAVID HOPKINSON

ECONOMIC GROWTH AND LOW-COST ENERGY

Several mixed matrix membranes were developed that have CO_2 permeability >5000 Barrer and CO_2/N_2 selectivity of ~30, well above the Robeson Upper Bound. This membrane is now one of the highest performance membrane materials reported for CO_2 capture from post-combustion flue gas.

Preliminary results suggest that the performance is stable when exposed to humidified gas.

In-situ MOF growth is a possible scheme for **reducing steps for membrane scale-up**. NETL is now partnered with a commercial membrane manufacturer to **prove the scalability** of NETL's MMMs.

& JAN STECKEL

PARTNERS

CCCSI² Carbon Capture Simulation for Industry Impac

2018 Science & Technology ACCOMPLISHMENTS SESSION Reducing the cost of captured carbon and putting it to work for America

