LONG-TERM METHANE EMISSIONS RATE QUANTIFICATION AND ALERT SYSTEM FOR NATURAL GAS STORAGE WELLS AND FIELDS

DOE NETL: Methane Emissions Quantification Project Award: DE-FE0029085

Richard L. Bowers, P.E., BCEE (rlowers@gsi-net.com)
Ann P. Smith, P.E., BCEE (apsmith@gsi-net.com)

GSI Environmental Inc., Austin, Texas
512-346-4474
RESULTS — PROJECT COMPLETED JULY 2018

KEY OBSERVATIONS

- Component counts vary based on classification/count methodology
- Component sub-classifications in Subpart W are appropriate
- Total emission rates and type of equipment emitting varied between field campaigns
- Sampling duration does not affect variability *(except pneumatics)*
- Measured emissions >leaker and <population emission calculated under EPA Subpart W

2016 DOE-NETL Project Award

- POP: 22 Months
- $849K federal; $213K cost share

4 Stations, Gulf Coast Basin, TX

- 16 Compressors

- 52,000 components screened; ~300 emit (<1%)

4 Repeat field campaigns
KEY OBJECTIVES

1. Methane measurement and emission factor development
 • Disaggregated above ground components
 • Ground-level seepage

2. High resolution monitoring of below-ground seepage
 • In-ground thermal sensors
 • Longitudinal methane emissions quantification

2016 DOE-NETL Project Award
POP: 32 Months
$1.3MM federal; $330K cost share

Clay Basin, Utah
43 Depleted Reservoir Wells

U.S. Gulf Coast
9 Salt Cavern Wells

DE-FE0029085: Gas Storage Well Project
CURRENT PROJECT OVERVIEW

Type of Storage
- Depleted Fields
- Salt Formations
- Depleted Aquifers

Total Field Capacity (Billion Cubic Feet)
- Less than 14.5
- 14.5 to 37.8
- 37.8 to 73
- 73 to 122
- Greater than 122

Map source: API, 2016
DE-FE0029085

MEASUREMENT METHODOLOGY

Above-Ground Equipment Leaks

1. Detect leaks using optical imaging and gas sensing devices, as needed.

2. Isolate and directly measure leaks with high flow sampling.

Seepage thru Ground Surface

3. Continuously monitor potential methane emissions from underground leaks with shallow in-ground sensors.

4. Directly measure seepage with isolation flux chamber testing.

Deep Underground Casing Leaks

5. Continuously monitor pressure differentials between adjacent casing strings.

Total Emissions

6. Measure and compare upwind vs. downwind methane and tracer concentrations over multiple time intervals.
EMISSIONS SCREENING & MEASUREMENTS

Storage Wellheads

<table>
<thead>
<tr>
<th>Field Event</th>
<th>Leak Detection/Screening</th>
<th>Emissions Measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Depleted Reservoir</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 2017</td>
<td>43</td>
<td>24</td>
</tr>
<tr>
<td>Oct. 2017</td>
<td>43</td>
<td>20</td>
</tr>
<tr>
<td>Salt Caverns</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mar. 2017</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Oct/Nov 2017</td>
<td>9</td>
<td>9</td>
</tr>
<tr>
<td>Total</td>
<td>104</td>
<td>62</td>
</tr>
</tbody>
</table>
EMISSIONS SCREENING & MEASUREMENTS

Wellhead Components

<table>
<thead>
<tr>
<th>Component Type</th>
<th>Depleted Reservoir (24+20 Wellheads)</th>
<th>Salt Caverns (9x2 Wellheads)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Screened Population</td>
<td>Measurement Count</td>
</tr>
<tr>
<td>Valve, Small (>2” lines)</td>
<td>1,833</td>
<td>69</td>
</tr>
<tr>
<td>Valve, Large (>2” lines)</td>
<td>433</td>
<td>46</td>
</tr>
<tr>
<td>Connector, Flange</td>
<td>1,376</td>
<td>38</td>
</tr>
<tr>
<td>Connector, Other</td>
<td>8,128</td>
<td>23</td>
</tr>
<tr>
<td>Pressure Relief Valve</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>Open-Ended Line</td>
<td>369</td>
<td>12</td>
</tr>
<tr>
<td>Regulator</td>
<td>242</td>
<td>3</td>
</tr>
<tr>
<td>TOTAL</td>
<td>12,732</td>
<td>191</td>
</tr>
</tbody>
</table>
EMISSION FACTOR CONSIDERATIONS

- False positive leak ID rates; *(FLIR and sniffer screening)*
- Leak rate detection limits *(scf/hr)*
- Sampled vs. total component population counts
EMISSION FACTORS FOR DISAGGREGATED WELLHEAD COMPONENTS

<table>
<thead>
<tr>
<th>Component Type</th>
<th>PF<sup>1</sup></th>
<th>LF<sup>2</sup></th>
<th>Subcategory A</th>
<th>PF<sup>1</sup></th>
<th>LF<sup>2</sup></th>
</tr>
</thead>
<tbody>
<tr>
<td>Connector</td>
<td>0.01 0.0047</td>
<td>6,488 - 0.88 15</td>
<td>Other</td>
<td>- 0.0058 5373</td>
<td>1.1 1.2 9</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Flanged</td>
<td>- 0.0026 1,115</td>
<td>3.4 0.49 6</td>
</tr>
<tr>
<td>Valve</td>
<td>0.1 0.20</td>
<td>1,540 4.1 3.6 59</td>
<td>Small<sup>3</sup></td>
<td>- 0.032 1,253</td>
<td>- 0.96 26</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>Large</td>
<td>- 0.92 288</td>
<td>- 5.7 33</td>
</tr>
<tr>
<td>PRV</td>
<td>0.17 -</td>
<td>10 3.7 - 1</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>OEL</td>
<td>0.03 0.011</td>
<td>186 2.3 0.27 4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Regulator</td>
<td>- 0.018</td>
<td>139 - 0.11 4</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

1 PF = Population Factor
2 LF = Leaker Factor
3 Small valve can be easily turned with 1 hand

New emission factors are *similar to or lower than* current EPA values.
POPULATION EMISSION FACTORS FOR GAS STORAGE WELLHEADS

- **Depleted Reservoir Wells**: Different subsets of 24 and 20 wells
 - March 2017: 3.9 scf/hr/well
 - October 2017: 4.3 scf/hr/well

- **Salt Cavern Wells**: Same 9 wells
 - March 2017: 5.3 scf/hr/well
 - October 2017: 4.3 scf/hr/well

- **Study Average**
 - March 2017: 4.3 scf/hr/well
 - October 2017: 4.3 scf/hr/well
EMISSION FACTORS Next Steps

- Publish EF results in peer-reviewed journal
- Present at conference(s)

- GHGRP (Subpart W) – *New component-level EFs represent actual gas storage wells* (not production wells)
- GHGI – *New well-level EFs supplement existing storage station-level EFs*

KEY POINT: Results offer EPA and industry defensible *gas storage well-specific* emission factors previously lacking in the GHGRP and GHGI.

GHGRP = Greenhouse Gas Reporting Program; GHGI = Greenhouse Gas Inventory
BELOW GROUND EMISSIONS QUANTIFICATION
GROUND-LEVEL METHANE SEEPAGE AROUND WELL HEADS

Estimated Total Ground-Level Methane Emissions
(4 - 8 ft. Radius around Wellhead)

Salt Cavern Wells Depleted Reservoir Wells

In-ground sensors installed at 3 wells

Salt Caverns - March 2017
Salt Caverns - Oct/Nov 2017
Depleted Reservoir - March 2017
Depleted Reservoir - October 2017
IN-GROUND SENSOR INSTALLATION
(Nov 2017, Mar 2018)
HIGH RESOLUTION SOIL HEAT MONITORING

Data Collection and Analysis

Continuous Meteorological, Soil Heat/Moisture Monitoring

Database

5-min Avg.

Soil Heat Signatures

Live Webcams
Clay Basin - Well 52 - Sensor Temperature Time Periods Above Well Temperature Compared With Background Temperatures
Facility Operations

Gas Injection vs. Extraction

![Graph showing gas injection and extraction over time]

- Winter
- Late Spring/Summer

Transition Period
WELL HEAT INTERFERENCE

Key Observations

- Valuable data collected in the past >8 months by the installed instrumentation.

- Subsurface near-well temperature signals largely overshadow methane-generated temperature signals
 - Except during “quiet” injection/extraction transition periods; ~2 months/yr

- More desired temperature change observations (due to methane seepage) can potentially be detected by advanced data analysis
 - Transfer-function-noise (TFN)
 - Artificial neural network (ANN)

- Controlled methane releases can provide valuable data to verify signal processing approach
 - Constant vs. pulsed releases at select sensor locations using existing installed equipment
BELOW-GROUND SEEPAGE *Next Steps*

DATA ANALYSIS

- Signal processing → Heat of biodegradation from subsurface methane seepage

LONGITUDINAL FLUX TESTING

- Focused testing on well(s) with strongest usable heat signal
- Controlled below-ground methane release

TECH TRANSFER

- TASC Meetings
- Conferences / Publications
TECHNOLOGY TRANSFER ACTIVITIES

- Technical Advisory Steering Committees (TASCs)
 - >50 participants from industry/regulatory/academia/government/NGO on 3 TASC calls in May 2018
- DOE participants on 2 calls in March 2018
- All provided critical feedback to assess EF development and in-ground sensor program

Gas Composition - Industry

Q: Could GSI separate data by site visit, e.g., what is the % leaking for FC1 compared to FC2?
A: Yes, done. Comparable results indicate no need for seasonally variable EFs.

Storage Wells Comment – EPA

"Storage wells are a small source of methane emissions, but EPA does, and will continue to, track"

Gas Fingerprinting - Industry

Q: Can you speak to separating out biogenic vs. thermogenic sources for subsurface CH4?
A: Performed analysis of methane, ethane, propane, etc. ratios to fingerprint gas type.
PROJECT PROGRESS / TIMELINE

<table>
<thead>
<tr>
<th>Task / Description</th>
<th>2016</th>
<th>2017</th>
<th>2018</th>
<th>2019</th>
</tr>
</thead>
<tbody>
<tr>
<td>Phase 1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1 Project Management and Planning</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliverable - Project Management Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliverable - Technology Transfer Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliverable - Data Management Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 Data Source Status Assessment</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Deliverable - Data Source Summary Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 Work Plan Development</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Plan</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Work Plan complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 Field-wide Leak Measurement</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Campaign 1 complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Field Campaign 2 complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 High Resolution Leak Monitoring</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leak Monitoring network operational</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>As-buils for installed sensor networks</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6 Phase 1 Data Processing and Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 Phase 1 Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1 Interim Progress Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1 Final Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 1 report complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 Leak Monitoring Refinement/Validation</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2, Field campaign complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9 Phase 2 Data Processing and Analysis</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10 Phase 2 Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2 Report</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Phase 2 Report Complete</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>11 Technology Transfer</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Milestone

- Work completed
- Budget Period 1
- Budget Period 3
- Work pending
- Budget Period 2
THANK YOU!

Richard L. Bowers, PE, BCEE
512-346-4474
rlrovers@gsi-net.com

Ann P. Smith, PE, BCEE
512-346-4474
apsmith@gsi-net.com