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High-temperature (600-850C)
operation

Varying atmospheres

0-100% H2 at the Anode
0-20% 02 at the Cathode
High current / stack voltage
60% efficient (fuel to electric)

One of major hope for fossil
fuel energy

Solid Oxide Fuel Cell Basics: Fuel-in Electricity Out
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Objective/Vision: Probing Operations of SOFC with High Spatial Resolution

Develop an integrated sensor solution to perform direct and
simultaneous measurements of temperature and strain profile
with 5-mm spatial resolution during SOFC operations to
understand factors impacts to its operations and longevity.

Example : Solid Oxide Fuel Cells
Internal Gas and Temperature

Temperature (K} | | | | ‘ |
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Pakalapati, S. R., ‘A New Reduced Order Model for Solid Oxide Fuel Cells,” Ph.D Thesis,

Department of Mechanical and Aerospace Engineering, West Virginia University,
Anrovantonan \AN/S

e Fuel consumption not uniform
o T profile not uniform (>150C)



Fully embedded Sensor in Fuel Cell Structures!

Fusion of fiber sensors in Fuel-Cell interconnect via 3D printing
Perform strain and temperature measurements

Perform high-spatial resolution measurement in fuel cell stacks ( Team up with
WATTS Technology)

Perform measurement over long-term.

Fiber Optics Sensors
— Miniaturized sensors: fully embeddable
— Harsh environment resilience (up to 900C)
— High spatial resolution measurements




(&1} Team Description and Assignments

e University of Pittsburgh: Pl: Kevin P. Chen
— Thomas Boyer (Ph.D. student): Sensor manufacturing
— Rongtao Cao (Ph.D. student): Sensor Platform

— Guangquang Liang (Research fellow): Integration and additive
manufacturing

e NETL Collaborators

— Drs. Paul Ohodnicki and Michael Buric’s group: Sensor Platform (Silica
and Sapphire) and Integration

— NETL Fuel Cell Testing Team
e Industry Collaborators
— Corning: Specialty fiber fabrication
— WATTS Technology Inc: sensor implementation and test
— NEC America: Industry outreach (large scale)
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High-T modifies fiber structures
H2-induced chemical reactors
Mechanical degradation




Developments of Distributed high-T fibers N=TL

Our fiber is too “good” for sensing applications...
Rayleigh scattering profile is too weak (like weak type | FBG)

Technical Solutions... Enhanced Backgroundd Rayleigh
Scattering ...
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Increasing Rayleigh scattering stability

-
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High-Stable T Profiles

Rayleigh Scattering Profiles Spectral Shift Quality
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EHT = 1.50kV Signal A= SE2 System Vacuum = 2.32e-006
WD = 43 mm Mag= 16.71KX Date :8 Aug 2016
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(&) Temperature coefficients determined to 800C INSTL

Temperature can now be measured at 800C with H2
atmosphere

Stability verified for ~72 hours at 800C
4C accuracy with heat/reheat cycles (10 cycles tested).
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Fuel Cell Tests

er insert

* Preliminary Tests carried out at NETL fuel cell facility

 Single plane fuel cell (not stack), testing temperature up
to 800C.



Fuel Cell Tests

Cathode
Heat exchanger

Fuel cell assembly — =

Thermocouple

Fiber sensor - i3 Fiber 5?“!“1_';'.
enclosed in nickel tube % - 1 enclosed in nickel tube
Anode \
Heat exchanger

» Preliminary Tests carried out at NETL fuel cell facility

 Single plane fuel cell (not stack), testing temperature up
to 800C.
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Fuel Cell Tests
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Fully embedded Sensor in Fuel Cell Structures!

Fusion of fiber sensors in Fuel-Cell interconnect via 3D printing
Perform strain and temperature measurements

Perform high-spatial resolution measurement in fuel cell stacks
( Team up with WATTS Technology)

Perform measurement over long-term.







Fully embedded Sensor in Fuel Cell Structures!

Laser Engineered Net Shaping Additive Manufacturing

Strain measurement performed by fiber sensors

Top Middle Bottom

8000 #— cool down 1 =— cool down 1

= cool down 1 <2000  § ® cool down 2 6000 o cool down 2
avial 4 # - cool down 2 \ 4— cool down 3 4 cool down 3
4— cool down 3 3500 \ ¥ cool down 4 4000w cool down 4

Strain (p:

: °°°: gm‘; '\ + cool down 5 + cool down 5
4000 + oo . < cool down 6 <4 cool down 6
. 4 cool down 6 & 40001 »— cool down 7 £ 2% _»_cooldown?
c » cool down 7 E \ ® © []
& 2000 3 Z .
? \ =-4500 4 04
= / -
- / \ c h i
0 ® /
= ® \ f
g £ & -5000] \ / -2000 1 ﬁ } S
20004 R \
: o = _ -4000 /
-4000 - \ = = .
_ -6000 - ————

e S
T T T T T T T
T T T T T T T 540 539 538 537 536 535 534 -8000 B ) o e A= AT
4 4, 4 4 4 487 4 X * . ! k
82 83 84 85 86 8 88 Length (m)
Length (m) Length (m)




Project Schedule

Yearl

Year 2

Task I: Fabrication/Test of High-Temperature Distributed Sensors

Subtagk 1.1: Establish optical imaging zetup to fabricate distributed fiber
zensors in cylindrical fibers using an ultrafast lazer direct writing scheme.

Subtagk 1.2: Develop feedback control algorithm to optimize the laser writing
setup.

Subtask 1.3: Comprehensive bench-top testing of distributed fiber sensors in
various reactive gas mixtures at high temperatures up to 850°C.

Subtask 1.4: Microstructure studies of laser-induced nanograting in fibers to
vaderstand high-temperature performances of distributed fiber sensors.

Task 2: Fabrication/Test of High-Temperature FBG array

Subtask 2 1: Fabrication of phaze masks amendable to produce FEG array
using one laser exposure.

Subtask 2 2: Perform laser fabrication to produce Type I FBG arrays in a wide
range of optical fibers.

Subtask 2 3: Perform the chemical regeneration process to convert Type IFBG
arrays into high-temperature stable FBG. The temperature stability will be
evaluated at typical operational temperamires of SOFCs.

Subtagk 2 4: Perform bench-top testing of FBG sensor arrays in various optical
fiber in a large variety of reactive gas mixtures including Ha, Oz, CHs, CaHs,
and other fuel gases.

Task 3: Sensor Packaging, Fuel Cell Testing, and Technology
Maturations

Subtask 3.1: Senszor packaging and embedding using ceramic coating and
ceramic tubing.

Subtagk 3 2: Sensor packaging and embedding in metal materials vsing
additive manufacturing technigues.

Subtagk 3 3: Senzor testing in both planar and tubular SOFC and SOFC
azzembly as functions of fuel compositions, temperatures, and reaction cycles.

Subtagk 3 4: TRL analysis of both distributed sensorz and FBG senzor arrays,
and action plan to further develop TEL and commercialize sensors for fuel

cells.




Milestones

Year 1

Year 2

12

16

20

24

Task I: Fabrication/Test of Hich-Temperature Distributed Sensors

Milestone 1: Succeszful development of an optical imaging setup and
computer control algorithm for the ultrafast laser processing system.

Milestone 2: Successful demonstration of highly stable distributed fiber
zensors in cylindrical fibers in reactive fuel gas stream at temperatures to
g850°C.

Task 2: Fabrication/Test of High-Temperature FBG array

Milestone 3: Successful establishing of FBG array fabrication setup nsing the
phase mask in photosensitive fibers.

Milestone 4: Succeszful demonstration of highly stable regenerated FBG
arrays mn reactive fuel gas stream at high temperatures op to 850°C.

Task 3: Sensor Packaging, Fuel Cell Testing, and Technology
Maturations

Milestone 3: Using high-temperature stable fiber sensors, successful
demonstrations of temperature measurements with high spatial rezolution in
both planar and tubular fuel cells during their operations.

Milestone 6: Delivering of final report and TRL assessment reports to
demonstrate that fiber sensors reach TRL6.
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Questions?

Collaboration Welcomed!

Kevin P. Chen
Email: pec9@pitt.edu




