

ALASKA GAS HYDRATE TEST WELL DRILLING, COMPLETION, & PRODUCTION CONSIDERATIONS

NETL

JANUARY 22, 2009 MORGANTOWN

Well Objectives

- Meet required scientific objectives
 - Initiate gas and water production at rates that are measurable and sustainable
 - Primary: pressure depletion
 - Secondary: chemical, thermal, CO2, other
 - Collect pressure, temperature and other required data
- Optimize cost, reliability, operability
 - Flow assurance
 - Integrate into existing operations

Gas Hydrate Production Considerations

- Gas production rate
- Water production rate
- Operating pressure
- Flow assurance
 - Hydrate/freezing control
 - Sand control
 - Reservoir subsidence
 - Hydraulic isolation
- Applies to vertical and horizontal wells, regardless of location

Water Production Considerations

Operating Pressure Considerations

- Gas hydrate fields will operate below the typical latelife reservoir pressure for a conventional gas reservoir
- Compression probably required unless access available to low pressure gathering system or going directly to flare

Flow Assurance Considerations

- Hydrate/freezing control
 - Inhibition (glycol/methanol)
 - Low dose hydrate inhibitors or cold flow technology
 - Near wellbore heating at production zone and in permafrost zone
- Sand control
 - Premium screens or gravel packs
- Subsidence
 - Some design procedures to offset tensile failures
 - Shear failures require sidetrack or well replacement

Hydraulic Isolation Considerations

- Proximity to free water/gas contacts can prematurely end testing operations
 - Flow behind pipe
 - Free gas/water
 - Uphole gas hydrates
 - Fractures (natural, planned, accidental)
 - Breakthrough after dissociation
- Well placement critical to success of test

Comparison Mallik & Elbert Sands

Grain Size, microns

Sand Control Considerations

- Vertical well
 - 9.625" casing or 8.5" open hole
 - 5" premium screen (>20% open flow area) designed with appropriate mesh screen slot width
 - Circulate appropriate mesh gravel pack into place
- Horizontal Well
 - 8.5" open hole
 - Wire-wrapped screen required for horizontal since hole cleaning is uncertain and premium screens more prone to plugging with drill solids

Premium Screen Options

Rod Based Wire Wrapped Screens

Baker: EXCLUDER 2000

Weatherford Excelflo

Hz Shallow Well

Horizontal Displacement, ft

Typical Gas Hydrate Well Completion

- Mallik equivalent
- Sand control
- ESP
- Downhole instrumentation
 - Pressure, temperature
 - Distributed temperature (DTS)
- Flow assurance
 - Chemical injection
 - Heat trace
 - Downhole heater
- Other configurations depending upon specific well & reservoir situations

Conclusions

- Vertical and horizontal drilling technology, including extended reach drilling, is available for gas hydrate test wells
- There are no apparent barriers to production using existing well completion technology
- Well placement and proximity to free gas/water layers (hydraulic isolation) critical to test success