

High Temperature Ceramic-Carbonate Dual-Phase Membrane Reactor for Pre-Combustion Carbon Dioxide Capture

Award No: DE-FE0031634

Jerry Y.S. Lin
Arizona State University
Tempe, Arizona

Kevin Huang
University of South Carolina
Columbia, SC

Project Kick-off Meeting Nov.8, 2018

Background and Preliminary Results

IGCC with Pre-Combustion CO₂ Capture Method

Ref.: CLIC Innovation Oy's Carbon Capture and Storage R&D program / Finland

Membrane Reactor for H₂ Production and CO₂ Capture

Crystalline Microporous Materials vs Molecular Size

CO₂ Perm-Selective Inorganic Membranes

 Microporous silica, carbon and zeolite membranes separate CO₂ from N₂ at low temperature

 Ultrathin, ion exchanged Y-type zeolites are best candidates for low temperature separation

CO₂/N₂ selectivity decreases with increasing temperature

M Anderson, HB Wang & YS Lin, Review Chem. Eng., 28, 101 (2012)

Diffusion-Controlled Permeation

At high temperature (>300°C) solubility difference diminishes:

$$F = [1][Diffusivity]$$

$$\alpha_{CO2/N2} = \frac{F_{CO_2}}{F_{N2}} = \frac{D_{CO_2}}{D_{N_2}} \sim 1.1$$

Concept of Ceramic-Carbonate Dual-Phase (CCDP) Membrane

Molten Carbonate

	Li/Na/K Carbonate	Li/K Carbonate	Li/Na Carbonate	Na/K Carbonate
Composition (mol%)	43.5/31.5/25	62/38	52/48	56/44
Melting Point (°C)	- 19/		501	710
CO3= Conductivity (S/cm)	1.24	1.15	1.75	1.17

Carbon Dioxide Permeation Flux-Theory

$$J_{CO_2} = \frac{\sigma_T RT}{4F^2L} ln \left(\frac{P'_{CO_2}}{P''_{CO_2}}\right) \qquad \text{For SDC-carbonate membrane} \\ J_{CO_2} = \frac{\kappa' RT}{4F^2L} [P'^n_{CO_2} - P''^n_{CO_2}] \\ \text{Total conductance} \qquad \begin{array}{c} \text{Membrane thickness} \\ \text{Membrane conditions} \\ \text{Carbonate ion conductivity} \\ \\ \sigma_T = \frac{\left[\gamma_p \sigma_C\right] [\gamma_s \sigma_i]}{\left[\gamma_p \sigma_C\right] + \left[\gamma_s \sigma_i\right]} \\ \text{Pore or solid fraction to tortuosity ratio for carbonate and ceramic phase} \end{array}$$

TT Norton, B Lu & YS Lin, , *J. Membr. Sci. 467*, 244 (2014)

Selection of Materials

• Desired characteristics

- High ionic conductivity
- Long-term chemical stability
- Compatible with molten carbonate
- Controllable pore size, porosity

Perovskite or Fluorite Structured Metal Oxides with Oxygen Vacancy Defects

Carbon Dioxide Permeation through CCDP Membranes

CO₂
permeation
flux is
proportional to
oxygen ionic
conductivity of
the ceramic
phase

Morphology of Tubular CCDP membrane

Support

CCDP Membrane

WGS with CO₂ Capture on CCDP Membrane Reactor

Membrane:

Ceramic: SDC;

Carbonate:

- Li₂CO₃/Na₂CO₃/K₂CO₃
- Outer diameter: 1.1cm;
- Inner diameter: 0.8cm;
- Thickness: 1.5 mm;
- Effective length:
 - 2.5 cm;
- Catalyst: No.

Reaction conditions:

- Temperature: 800-900°C;
- Feed, Sweep side pressure: 1 atm;
- Simulated syngas: 49.5% CO, 36% CO₂, 10% H₂ and 4.5% N₂;
- Feed side flow rate: syngas 10-30 mL·min⁻¹ and N₂ 10 mL·min⁻¹ ,
- Steam to CO molar ratio 1.0-3.0;
- Sweep side flow rate: He 60 mL·min⁻¹.

Results of Catalyst-Free WGS with CO₂ Capture in Membrane Reactor

Effect of Pressure on WGS in CCDP Membrane Reactor

WGS reaction in a 1.5 mm thick disk CCDP membrane reactor at 700°C without catalyst.*

- Thickness of CCDP disk membrane ~ 1.5 mm.
- Feed side: CO flow rate 10 ml/min, N₂ flow rate 40 ml/min, H₂O/CO=3.0;
- Sweep side: He flow rate 100 ml/min.
- Pressure at permeate sides is 1 atm

Feed pressure (bar)	CO conversion (%)	CO ₂ recovery (%)
1	44.4	2.8
2	55.7	8.1
3	61.2	11.5
4	65.0	13.8
5	67.3	15.5

Proposed Improved Membrane Reactor for WGS with CO₂ Capture

Improved CCDP Membrane Reactor for WGS with CO₂ Removal

- High temperature catalyst-free WGS reaction (earlier work on Pd membrane reactor by NETL)
- CCDP membrane reactor for WGS reaction at high pressure with CO₂ removal
- Sulfur resistant CCDP membrane with improved CO₂ permeace
- WGS with simulated syngas feed

Block-flow diagram of high temperature CCDP membrane reactor with CO₂ capture for IGCC power plant

Membrane Material Properties

	Measured/	Projected
	Estimated	Performance
	Performance	
Materials of Fabrication for Selective Layer	$Ce_{0.8}Sm_{0.2}O_{2-\delta}(SDC)$ -	M-doped ZrO ₂ (MSZ)
	(42.5/32.5/25	(42.5/32.5/25
	Li/Na/K) ₂ CO ₃ (MC)	Li/Na/K) ₂ CO ₃ (MC)
Materials of Fabrication for Support Layer (if applicable)	Same	$Bi_{1.5}Y_{0.3}Sm_{0.2}O_{3-\delta}(BYS)$
Nominal Thickness of Selective Layer (μm)	1500	50-200
Membrane Geometry	Tubular	Tubular
Max Trans-Membrane Pressure	1	30
Hours tested without significant degradation	120 hr	1000 hr
in H ₂ S free syngas		
Hours tested without significant degradation	Not tested	720 hr
in simulated syngas containing H ₂ S free		
syngas		

Membrane Performance and Module Design

	Units	Measured/ Estimated Performance	Projected Performance
Materials of Fabrication for Selective	Layer		MSZ-(42.5/32.5/25 Li/Na/K) ₂ CO ₃ (MC)
Temperature	°C	700-900°C	700-900°C
Pressure Normalized Flux for Permeate (CO ₂ or H ₂)	GPU or equivalent	300-600 (CO ₂ as permeate) (900°C)	2000-6000 (CO ₂ as permeate) (900°C)
CO ₂ /H ₂ Selectivity	-	>500	>500
Flow Arrangement -		Co-current Flow	
Packing Density	m ² /m ³	40-60	
Shell-Side Fluid	-	Steam or I	Permeate
CO conversion	%	38	99
CO ₂ capture	%	35	90

Proposed Work

Project Goal

To demonstrate the high temperature and high pressure WGS membrane reactor with simulated syngas as feed, achieving one-pass

- CO conversion > 99%,
- CO₂ recovery (capture) > 90%,
- CO₂ and H₂ streams purity ~ 99% and 90%,respectively.

Developing the Improved CCDP Membranes - Materials

Compared to SDC-CCDP Membranes, a new CCDP membrane should have:

- CO₂ permeance 3-7 times (flux 10-40 times)
- Stable in H₂S containing coal gasifier syngas

Thin Dual-Phase Membrane to Increase Permeance

Synthesis of Thin Sc-doped ZrO₂ (ScSZ) CCDP Membrane

Studies on WGS on Improved CCDP Membrane Reactor with Simulated Syngas

High Pressure, High Temperature Membrane Module

Typical
Composition
of Gas from
a GE
Radiant Coal
Gasifier

Gas	mol%
H ₂	25.9
CO	26.7
CO ₂	11.6
H ₂ O	33.6
CH₄	0.08
H ₂ S	0.56
cos	0.01
NH ₃	0.13

- CO₂ permeation tests at high feed pressures (with simulated gasified gas, without steam)
- Stability test for up to 1 month

Modeling and Experimental Studies on WGS in CCDP Membrane Reactor

- Studying catalyst-free WGS kinetics at high temperature (700-900°C) and high pressure (20-30 atm)
 Modeling and analysis of CO₂ permeation and WGS reaction kinetics to obtain key characteristics of CCDP membrane reactor for WGS to guide experiments
- ☐ WGS reaction in CCDP membrane reactor with sulfur-free syngas
- □ WGS reaction CCDP membrane reactor with simulated coal-gasifier syngas containing H₂S
- □ Identification of experimental conditions to achieve >99% CO conversion, 90% CO₂ recovery; CO₂ and hydrogen streams with respectively 99% and 90% purity (drybase).
- ☐ Stability tests of the CCDP membrane reactors (for 1-2 months)

Process Design, Economical Analysis and EH&S Risk Assessment

- Design a WGS membrane reactor process with feed of raw syngas from a coal gasifier for a full-scale IGCC plant (550MW basis).
- Perform techno-economic analysis of the IGCC plant with the integration of WGS CCDP membrane reactor.
- The process design and technoeconomic analysis follow the guideline presented in the NETL reports

Assumptions and Cost Estimation of Membrane Reactor

Parameters	Conditions
Coal type	Illinois 6#
Coal feed	slurry
Gasifier type	GE gasifier
Coal Consumption Rate	220,904 kg/hr
Carbon Content in Coal (dry	0.70
basis)	
Rate of CO in Syngas	2,296 mol/s
Rate of H ₂ in Syngas	2,187 mol/s
Pressure of coal gas to WGS	3 MPa
reactor	
Temperature of coal gas to	800-950°C
WGS reactor	

Deliverables of Project

Task	Deliverable Title	Anticipated Delivery Date
1.0	Project Management Plan	Update due 30 days after award. Revisions to the PMP shall be submitted as requested by the Project Officer.
3.1	WGS membrane reactor system	At the end of 9 th month, the Recipient shall prepare and submit a report detailing design and operation of high temperature and high pressure WGS membrane reactor system.
4.0	Development of improved CCDP membrane	At the end of 12 th month, the Recipient shall prepare and submit a report reporting new CCDP materials with desired H ₂ S resistant and CO ₂ permeability
6.0	Fabrication of improved CCDP membrane tubes	At the 27 th month, the Recipient should fabricate tubular CCDP membranes of improved composition and structure for testing in WGS membrane reactor, and submit a report documenting the properties of the membranes.
8.0	WGS reaction in CCDP membrane reactor	At the end of the project, the Recipient shall prepare and submit a report detailing the performance of WGS reaction in CCDP membrane reactor, including stability data.
9.0	Final techno-economic Analysis	At the end of the project, the Recipient shall prepare and submit a techno-economic analysis following the format and containing the information and data as defined in Appendix G of the FOA.
1.0	State Point Data Table	At the end of the project, the Recipient shall prepare and submit a complete and final State Point Data Table, appropriate to the technology being developed, following the format and containing information and data as defined in Appendix F of the FOA.
1.0	Technology Maturation Plan	At the end of the project, the Recipient shall prepare and submit a final Technology Maturation Plan following the format and containing the information and data as defined in Appendix H of the FOA.
9.0	Environmental Health and Safety Risk Assessment	At the end of the project, the Recipient shall prepare and submit an Environmental Health and Safety Assessment following the format and containing the information and data as defined in Appendix J of the FOA.

Success Criteria

At the end of Budget Period 1

- Development of H₂S tolerant CCDP membrane with CO₂ permeance of 1000 GPU and CO₂/H₂ selectivity > 500
- Establishment of high temperature and high-pressure membrane reactor (and sealing technology) and test of WGS in the reactor with CO conversion larger than 95%

At the end of the project

- Development of H₂S tolerant tubular CCDP membrane with CO₂
 permeance of 2000 GPU and mechanical strength that can handle 30 am
 transmembrane pressure.
- Operation of the high temperature, high pressure CCDP membrane reactor for testing WGS reaction with simulated coal gasified gas at 99% CO conversion and 95% CO₂ capture rate.

Progress Updates

- Contract has been in place at ASU since October, 2018
- ASU is working on subcontract with USC

- ASU has two researchers working on the project on part-time basis. A full-time post-doctor has been hired and will start Jan.1, 2019
- USC has hired a post-doctor, starting Nov.1, 2018 for the project

