

Fuel Injection Dynamics and Composition Effects on RDE Performance

PI: Mirko Gamba

Co-I: Venkat Raman

Department of Aerospace Engineering
University of Michigan

Kickoff meeting October 26, 2017
UTSR/NETL

Summary

• Title:

Fuel Injection Dynamics and Composition Effects on RDE Performance

Funding agency:

- University Turbine Systems Research/NETL
- Funding Opportunity Number: DE-FOA-000117
- Topic Area 6: Pressure Gain Combustion R&D
- Project manager: Robin Ames
- Award: DE-FE0031228

Personnel:

- PI: Mirko Gamba, University of Michigan
- Co-I: Venkat Raman, University of Michigan
- Students currently involved:
 - Fabian Chacon
 - James Duvall
 - Takuma Sato
 - Supraj Prakash

– Key external collaborators:

- Dr. John Hoke, Innovative Scientific Solution, Inc. (ISSI)
- Dr. Fred Schauer, AFRL WP
- Dr. Venkat Tangirala, GE
- Dr. William Hargus, AFRL/Edwards
- Drs. Adam Holley and Peter Cocks, United Technology Research Center (UTRC)
- Kyle McDevitt, Williams International

Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations

Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations

Overarching objectives

Objective 1:

Develop a comprehensive understanding of injector dynamics, coupling with diffuser back-reflections, and their impact on RDE mixing, operation and performance.

• Objective 2:

Develop a comprehensive understanding of multi-component fuels (syngas and hydrocarbon blends) on RDE detonation structure and propagation, operation and performance.

• Objective 3:

Develop advanced diagnostics and predictive computational models for studying detonation propagation in RDEs, with arbitrary fuel composition and flow configuration.

Expected outcomes: RDE physics advancements

Outcome 1:

Fundamental physical understanding of detonation-induced dynamics of practical injection systems:

- Coupling with diffuser geometry;
- Their effect on RDE mixing, detonation structure, operability and performance.

• Outcome 2:

Fundamental physical understanding of multicomponent fuel (MCF) chemistry effects:

- Detonation wave structure and propagation
- RDE operability and performance;

Expected outcomes: RDE methods advancements

Outcome 3:

Detailed experimental measurements under various injection schemes and MCFs

- RDE performance and detonation structure
 - Creation of experimental databases
- MCFs representative of syngas and natural gas characterized by a range of detonability properties, ignition delays and Wobbe index
 - Relevance to DOE and industry programs

Outcome 4:

Computationally efficient detonation models for MCFs for use with DNS/LES modeling of detonations in relevant full-system RDEs under practical MCFs

- Implementation into open-source platforms; e.g., openFoam
- Transfer of detonation computational models to industry

Objectives and tasks

Timeline of the project

Task 1

Task 2

Task 3

Task 4

Task	Description	Start	Finish	2017 Q1		20	18		2019				2020		
					Q2	Q3	Q4	Q1	Q2	Q3	Q4	Q1	Q2	Q3	
1.0	Project meeting and planning	10/17	9/20												
1.1	Project meetings and progress reports	10/17	9/20												
	Study of the effects of low loss injector dynamics on detonation mixing and structur and RDE operability and performance	10/17	9/20												Ī
2.1	Experimental study of low loss injector dynamics, their coupling with detonation and exhaust diffuser dynamics, and their effects on RDE operability and performance	10/17	3/19												
2.2	Investigate how low loss injector dynamics affects detonation mixing and structure in optical RDE using laser diagnostics	4/18	3/20												Ī
	Full-system simulation of coupled dynamics of air/fuel injector, detonation and exhaust diffuser and their effect on RDE operation	10/18	9/20												Ī
	Study of the effects of relevant multicomponent hydrocarbon fuels on detonation structure, RDE operability and performance	4/18	9/20												Ī
	Experimental study of RDE detonation properties and performance with hydrocarbon MCFs in optical RDE	10/18	9/20												Ī
3.2	DNS studies of detonation structure in multicomponent fuels	4/18	9/19												Ī
	Conduct LES analysis of RDE configurations to understand the effect of multicomponent fuels on performance	10/18	9/20												
	Develop advanced diagnostics and structure-based detonation models for multicomponent fuels	10/17	9/20												Ī
	Development of advanced laser diagnostics for the study of detonation waves in optical RDE under relevant conditions	10/17	9/19												Ī
4.3	Development of structure-based model of detonation waves in stratified mixtures with arbitrary multicomponent fuels	10/17	3/19												Ī

Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations

Overview of RDE operation and Pressure Gain (PG)

Overview of RDE operation and Pressure Gain (PG)

Coupling, dynamics and loss of pressure gain

Unsteady operation of injection system

- Injector effectively transition from a stiff to a non-stiff injector
- Post-detonation products backflow into plenums
- Excite plenum dynamics

Strongly coupled system

- Response of injection system to varying
- Back-reflections from diffuser (impedance mismatch and wave reflections)
- Mixing dynamics and effectiveness
 - Incomplete fuel/air mixing
 - Fuel/air charge stratification
- Detonation wave dynamics and structure
 - Mixture leakage (incomplete heat release)
 - Parasitic combustion

From: (top) Nordeen et al., AIAA 2011-0803

Example of upstream propagation of blast wave

From NETL experiments (Ferguson) on AFRL injector

CFD computation at U-M

Example of detonation chamber / plenum coupling

Fuel relevance: Toward operation with NG and syngas

Most of work conducted so far:

- Hydrogen/air operation
- Stable detonation in lab-scale RDE enabled by favorable detonation properties
 - Detonability
 - Cell size

Application (energy conversion systems) require:

- Natural gas and/or syngas operation
- Fuel flexibility and broad operation (e.g., from part to full load)

Anticipated challenges

- Stabilization of detonation wave
 - Limits imposed by detonation cell size
- Fuel blend of relevant species ($H_2/CH_4/CO$) impacts detonation properties
 - E.g., induction length (cell size and stability) strongly reduced with H₂ addition (contrary to propane/ethylene)
 - E.g., presence of CO₂ shifts CO to CO2 conversion equilibrium, impacting heat release
 - E.g., difference in oxidation time scale of different components can affect overall structure

Overarching objectives

• Objective 1:

Develop a comprehensive understanding of injector dynamics, coupling with diffuser back-reflections, and their impact on RDE mixing, operation and performance.

• Objective 2:

Develop a comprehensive understanding of multi-component fuels (syngas and hydrocarbon blends) on RDE detonation structure and propagation, operation and performance.

Objective 3:

Develop advanced diagnostics and predictive computational models for studying detonation propagation in RDEs, with arbitrary fuel composition and flow configuration.

Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations

RDE Experimental Infrastructure at U-M

- Injector sector subassembly
 - Sector of RDE injector for mixing effectiveness measurements

- Reduced-scale RDE (6" RDE platform)
- Developed under previous projects
- Operational with H₂/Air, various flow rates and equivalence ratios
- Will be expanded to include:
 - MCFs capability
 - Additional instrumentation to investigate RDE dynamics

Optical RDE (Race-Track RDE)

- Fabrication being completed under previous projects
- Equivalent to 12" round RDE
- Used for flowfield measurements under RDE relevant conditions

Injector sector example (photograph)

Sector of 6" round RDE geometry

- Pintle geometry is identical to RDE's, just unwrapped
- Air plenum geometry is different than RDE's
- Equivalent length about 1/8 of circumference of circular RDE
- Optical access for laser diagnostics

Objective

 Conduct flow visualization and non-reacting mixing measurements under different (jet-to-air) velocity and density ratios (momentum flux ratio)

This system can be used in support of RDE measurements (flow visualization and mixing)

- Used to perform flow structure imaging and mixture fraction measurement using tracer-based laser induced fluorescence measurements
- Variation of injection design
- Parametric variation of velocity and density ratios

Can be available to project if needed

Schlieren imaging to identify flow structure (non-reacting mixing)

Time

3-D rendering of 6" round RDE system

3-D rendering of 6" round RDE system

Fuel injection system

Modular and readily exchangeable

Three designs currently available "Afterburner"

Fuel injector (semi-impinging jet shown)

Three injection schemes available for 6" RDE system

6" round RDE system: pintle injector details

Pictures of RDE hardware (assembled with exhaust)

6" RDE system: some instrumentation

3-D rendering of Race-Track RDE system (12")

Designed with optical access in mind

- Allows for optical access of injection system and detonation chamber

Fuel injection system

- Follows modular design approach of round RDE
- Red/blue pair, with similar modularity

RT-RDE Being Completed

Example of RDE operation

Mixture: H₂/air

Air flow rate: 450 g/s Equivalence ratio: 1

Test sequence and ignition process (acoustic signature)

- I. Ignition
- II. Transition to detonation
- III. Detonation termination and transition to deflagration
- IV. Fuel off

Test sequence and ignition process (acoustic signature)

Coupling between operation mode and plenum

- Inlet conditions depend on operation mode
 - In detonation mode, plenum pressure lower than in deflagration mode

Pressure variation along detonation channel

Coupling between operation mode and plenum

- Inlet conditions depend on operation mode
 - In detonation mode, plenum pressure lower than in deflagration mode
- Air injection partially (space/time) chokes at high flow rates
 - Detonation mode is observed (correlation?)
 - Flow possibly separates at injectors (reduced cross-sectional area for flow)
 - Injector stiffness vary over detonation cycle

Estimation of Mach number at air and fuel injection throat

Pressure variation along detonation channel

PR = plenum-to-channel pressure ratio

Waterfall spectra of detonation chamber dynamic pressure

Detonation chamber pressure variation

• 3 main modes typically observed

- A: wave propagation speed at $0.8 f_D$
- B: Tone at $1f_D$
- C: Tone at $0.25 f_{\rm D}$

Possibly coupling of various dynamics

- Plenum dynamics & detonation wave

Focus on project

Systems upgrade

- Instrumentation upgrades (dynamic pressure) to quantify dynamics
- Addition of variable area diffuser
- Air injector with variation in area ratio (stiffness)
- Extend air plenum to evaluate plenum / detonation wave extent of coupling

• Two major activities / focus

- Dynamics: injector/detonation/diffuser dynamics
- Multicomponent fuels operation

Dynamics

- Identification and evaluation of RDE dynamics
- Questions:
 - what are they?
 - Identification from macroscopic observables on round RDE
 - What do they depend on?
 - Geometric and fuel variation on round RDE
 - How do they effect detonation wave structure and overall operation
 - Detailed laser diagnostics for flowfield measurements (mixing, flow velocity and detonation structure)
 - Combined PIV and tracer PLIF (flame marker or mixture fraction) studies in RT-RDE

Multicomponent fuels

- Evaluation of use of hydrocarbons on
 - RDE operability and performance from macroscopic observables
 - Detonation structure dependence
 - Effect on detonation dynamics
- Impact of CH₄, and CO additions
- Impact of C₂H₄ or C₃H₈ additions (contaminants, fuel flexibility)
- Impact of CO₂ addition on changing heat release profile

Example of spectral and cross-spectral analysis for system's dynamics identification

Application to shock train dynamics (supersonic isolator)

Collaboration with AFRL / Edwards on diagnostics: augment laser diagnostics for detonating flows

Transition/laser coupling

Absorption (rovibronic electronic transition)

State-resolved energy transfer

Collaboration with AFRL / Edwards on diagnostics: augment laser diagnostics for detonating flows

- These methods and collaboration gives us a framework to:
 - Evaluate and optimize LIF-based imaging technique for detonating flows
 - Demonstrate methods in RDE relevant flowfields (RT-RDE)
 - Perform measurements on RT-RDE at AFRL/Edwards leveraging their instrumentation and capabilities
 - Anticipated 3 measurements campaigns

Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations

Goals of CFD Program

- Develop fully-resolved adaptive mesh compressible solvers for capturing detonation processes
 - Study structure of detonations in non-premixed systems
 - Develop reduced-order models
 - Study fuel composition effects on stability
- Assist in the development of the experimental RDE configurations
 - Provide detailed simulation data to complement experimental measurements
 - Conduct simulations outside of experimental parameters to extend datasets
- Developments and studies leverage
 - OpenFOAM suites of codes
 - U-M detonation solvers UMDetFOAM

OpenFOAM Code Development

- All codes and models developed using the openFOAM open source code base
 - 10+ years experience in using this tool
 - Several NETL projects successfully completed
 - Easy transfer of code to industry/research community
 - Prior solvers transferred to Siemens Inc.
- Highly scalable and runs on 10K+ processors
 - Extensive code rewrites to ensure linear scalability

Compressible Detonation Solved UMDetFOAM

Fully explicit solver

Euler and N-S equations

Several flux schemes

Locally adaptable to ensure minimal dissipation

CANTERA-based chemistry module

- Allows any detailed chemistry mechanism to be used
- Can handle arbitrary number of species

Adaptive mesh refinement

Locally adaptive grids to capture detonation structures

Case Studies - 1D detonation with AMR

- Convergence test with H2/ Air mechanism
- The base grid for AMR study is dx = 0.4 mm
 - Shows convergence as increasing the level of refinement

2-D ethylene case

Cellular structure validation

- Longitudinal tracks from the intersection points
- -2 cell structure across the channel width

 C_2H_4 / O_2 , 0.1 atm, 300 K $\Delta = 3 \mu m$, h = 2 mm

AFRL and U-M Full Geometry Modeling

AFRL geometry

Pintle geometry

AFRL Injector Response

• Flashback occurs when a detonation wave moves across injector

- Chocking is terminated
- Post-combustion gases propagates back into plenum
- Blast waves move into plenum

Quick injector recovery

Reversed flow pushed back into channel due to high plenum pressure

Focus on the project

- Simulate fuel effects on cell detonation size
 - -2D geometry
 - 2D unrolled geometry
 - Full scale geometry
- Effect of wave structure on detonation process
 - Coupling between inflow and detonation chamber
 - Interaction of downstream wave structures
- Modeling detonations
 - A tabulated modeling approach

Outline

- Programmatic overview
- Introduction to the problem and general approach
- Experimental activities
- Computational activities
- Interactions and collaborations

Interactions, collaborations and synergies

Strong coupling between experiments and computations

- Model development and validation
- Experiment design and understanding
- Strong collaborations with external partners
- Combined investigation of the physics of detonations under MCFs (relevance to application) and impact of injector/detonation/diffuser dynamics on detonation properties and RDE performance

Key external collaborations

- ISSI/AFRL WP (Drs. John Hoke & Fred Schauer) on RDE operation, performance and modeling.
- UTRC (Drs. Adam Holley and Peter Cocks) on detonation and RDE modeling for arbitrary fuels and geometries.
- GE (Venkat Tangirala) on RDE operation, performance and modeling.
- AFRL/Edwards (Dr. William Hargus) on the development and application of diagnostics applied to relevant RDE geometries.
- Williams International (Kyle McDevitt) on detonation and RDE modeling for arbitrary fuels and geometries.

Other collaborations/interactions

- NETL (Dr. Ferguson) on modeling and RDE performance & operation
- University of Maryland (Prof. Yu) on use of experimental data for validation in simple geometries
- NRL (Dr. Kailasnath) on code and combustion model development

Questions?