Transformational Membranes for Pre-combustion Carbon Capture

DE-FE0031635

PI: Winston Ho, Professor

William G. Lowrie Department of Chemical & Biomolecular Engineering

Department of Materials Science and Engineering

The Ohio State University

DE-FE0031635 Project Kick-off Meeting NETL, Pittsburgh, PA, November 16, 2018

Outline

- Project Objective
- Project Organization and Roles
- Technical Background
- Technical Approach
- Funding and Performance Dates
- Project Schedule/Milestones
- Success Criteria
- Risk Management
- Outlook

Project Objective

- Develop a cost-effective design and fabrication process for a novel transformational membrane and its membrane modules that capture CO₂ from coal-derived syngas
 - 95% CO₂ Purity
 - >99% H₂ Recovery
 - COE 30% Less than Baseline Approaches

Project Organization and Roles

Technical Background: Proposed Process

 Proposed membrane process does not require significant syngas cooling (compared to competition)

Location of Proposed Technology in IGCC Plant

Selective Amine Polymer Layer / Polymer Support

Simplicity of Membrane for Low Cost

Selective Amine Polymer Layer / Polymer Support

- Selective Amine Polymer Layer
 - Facilitated transport of CO₂ via reaction with amine

$$CO_2 + R-NH_2 + H_2O \Longrightarrow R-NH_3^+ + HCO_3^-$$

- Facilitated transport = flux augmentation via reaction
- High CO₂ permeance and CO₂/H₂ selectivity

Amine Polymer Layer Contains Mobile and Fixed Carriers: Facilitated Transport

Facilitated Transport vs. Solution-Diffusion Mechanism

- CO₂ Facilitated Transport Flux: Very High
 - CO₂-amine reaction enhances CO₂ flux

- H₂ Flux: Very Low
 - H₂ does not react with amine
 - H₂ transport follows conventional physical solutiondiffusion mechanism, which is very slow

Membrane Performances

Simulated Syngas at 107°C and 31.7 bar

Effect of Carrier Saturation Phenomenon on Performance

Effects of Membrane Allocation on Membrane Area and H₂ Recovery

Effect of CO₂ Permeance on Cost of Electricity Increase

Membranes Synthesized with Tuned H₂S/CO₂ Selectivities

Effect of H₂S/CO₂ Selectivity on H₂S Concentration in H₂ Product

Membrane Scale-up: Continuous Rollto-Roll Fabrication Machine at OSU

Spiral-Wound Membrane Module Fabrication

Element Rolling Machine

Spiral-Wound Membrane Element

Membrane Module

Feed Outlet

Vacuum Permeate

Feed Inlet

Technical Approach

- BP1: 10/01/2018 03/31/2020
 - Laboratory-scale membrane synthesis, characterization and transport performance studies
 - High-level preliminary techno-economic analysis
- BP2: 04/01/2020 09/30/2021
 - Laboratory-scale membrane synthesis, characterization and transport performance studies to continue
 - Fabrication, characterization and transport performance studies of scale-up membrane (14" wide by 20' long)
 - Fabrication, evaluation and stability testing of spiral-wound membrane modules
 - Update techno-economic analysis performed in BP1
- Integrated program with fundamental studies, applied research, synthesis, characterization and transport studies, and high-level techno-economic analysis

BP1 – Lab-Scale Membrane Synthesis

Increase CO₂ Sorption at High Pressure

- Use sterically hindered amines as CO₂ carriers
- Incorporate ethylene oxide moieties to enhance CO₂ capacity at high pressure
- Study effects of polyethylene glycol and its derivatives
- Synthesize higher MW polyvinylalcohol and polyamines

Enhance Membrane Mechanical Properties

- Incorporate 2-D nanofillers
- Optimize filler geometry and surface properties
- Study permeants-polymer-filler interactions

Preliminary Techno-Economic Analysis

- Research guideline for membrane performance
- Demonstrate feasibility for high CO₂ purity and H₂ recovery
- Show pathway for a 15.3% COE increase

BP1 Approach – Sterically Hindered Amine

Reaction of CO₂ with Unhindered Amines

$$CO_2 + R-NH_2 \rightleftharpoons R-NH_2^+-COO^ R-NH_2^+-COO^- + R-NH_2 \rightleftharpoons R-NH-COO^- + R-NH_3^+$$

$$\underline{Overall:}$$
 $CO_2 + 2 R-NH_2 \rightleftharpoons R-NH-COO^- + R-NH_3^+$

Reaction of CO₂ with Hindered Amines

$$CO_2 + R_1 - NH - R_2 \rightleftharpoons R_1R_2 - NH^+ - COO^ R_1R_2 - NH^+ - COO^- + H_2O \rightleftharpoons R_1R_2 - NH_2^+ + HCO_3^ \underline{Overall:}$$
 Can double the CO_2 capacity
 $CO_2 + R_1 - NH - R_2 + H_2O \rightleftharpoons R_1R_2 - NH_2^+ + HCO_3^-$

BP2 – Membrane Scale-up and Prototype Module Fabrication

Membrane Scale-up and Characterization

- Lab-scale membrane synthesis, characterization and transport performance studies to continue
- Continuous roll-to-roll fabrication (14" wide by 20' long)
- Characterize performance with simulated syngas
- Demonstrate facile and reproducible fabrication in pilot scale

Prototype SW Module Fabrication

- Fabricate 9 prototype SW modules (800 cm² each)
- Characterize separation performance and pressure drop
- Test modules in series with hybrid membrane allocation
- 200-h stability test with simulated syngas

Final Techno-Economic Analysis

- Update techno-economic analysis with module performance
- Environmental Health and Safety (EH&S) evaluation

Funding and Performance Dates

Total Budget: 10/01/2018 – 09/30/2021
 DOE: \$799,988; OSU: \$199,998 (20% cost share)

• BP1: 10/01/2018 – 03/31/2020

DOE: \$386,694; **OSU**: \$96,674

BP2: 04/01/2020 - 09/30/2021

DOE: \$413,294; **OSU:** \$103,324

Schedule/Milestones - BP1

				1st	Qua	Quarter 2nd Quarter		31	3rd Quarter		4th Quarter		rter	5th	5th Quarter		6th	ı Qua	Quarter				
Task Name	Start Date	End Date	Cost (\$)	Oct	Nov	Dec	Jan	Feb Mai	r Ap	r May	Jun	Jul	Aug	Sep	Oct 2	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Budget Period 1	10/1/2018	3/31/2020	483,368																				
Task 1: Project Management and Planning	10/1/2018	3/31/2020	48,339																				
Updated PMP submitted		10/30/2018																					
Task 2: Synthesis of Transformational Membranes	10/1/2018	3/31/2020	193,402																				
Complete investigation of 5 of the 7 proposed membrane																							
synthesis approaches		12/31/2019		_	_				<u>\</u>										_	_			
Task 3: Membrane Characterization	11/1/2018	3/31/2020	193,402																				
Complete membrane characterization and demonstrate																							
CO_2 permeance = $200 - 275$ GPU and CO_2/H_2 selectivity																							
= $100 - 120$ at $\sim 110^{\circ}$ C and 31.7 bar feed inlet (12.5 bar																							
CO_2)		3/31/2020							V														
Task 4: Preliminary Techno-economic Analysis	10/1/2018	3/31/2020	48,225																				
Complete preliminary techno-economic analysis showing																							
the feasibility of a COE increase of 15.3%		3/31/2020																					
Quarterly Progress Reports	1/1/2019	4/30/2020																					
Budget Period 1 Annual Report	4/1/2020	6/30/2020																					04

Schedule/Milestones - BP2

Schedule/Milestones - BP2 (cont'd)

				1st	Quar	ter	2nd Quarter		3rd Quarter			4th Quarter			5th Quarter			6th Quarter						
Task Name	Start Date	End Date	Cost (\$)	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec	Jan	Feb M	ar A	pr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
Budget Period 2	4/1/2020	9/30/2021																						
Task 12: Continuous Steady Operation with Modules in Series	7/1/2021	9/30/2021	50,210																					
Complete steady state operation with modules in series and																								
demonstrate feasibility on capture of the CO $_2$ with >95%CO $_2$,	•	,			
purity with simulated syngas for 200 hours		9/30/2021																						
Task 13: Final Updated Techno-economic Analysis	5/1/2021	9/30/2021	38,808																					
Complete final techno-economic analysis showing the																								
feasibility of a COE increase of 15.0%		9/30/2021																						
Task 14: State Point Data Table	9/1/2021	9/30/2021	0																					
State point data table submitted		9/30/2021																						
Task 15: Final Technology Maturation Plan	9/1/2021	9/30/2021	0																					
Final technology maturation plan submitted		9/30/2021																						
Task 16: Environmental Health & Safety Risk Assessment	9/1/2021	9/30/2021	0																					
EH&S risk assessment submitted		9/30/2021																						
Quarterly Progress Reports	7/1/2020	10/30/2021																						
Final Project Report	10/1/2021	12/30/2021																						

Success Criteria

- BP1: 10/01/2018 03/31/2020
 - $-CO_2$ permeance = 200 275 GPU
 - $-CO_{2}/H_{2}$ selectivity = 100 120
 - TEA: 15.3% COE increase
- BP2: 04/01/2020 09/30/2021
 - $-CO_2$ permeance = 275 -350 GPU
 - $-CO_2/H_2$ selectivity = 120 140
 - 200-h module stability with simulated syngas
 - TEA: 15% COE increase

Risk Management

Perceived Risk	Probability	Impact
Insufficient membrane selectivity	Low	Medium
Insufficient membrane permeance	Medium	Medium
Pretreatment not working properly	Low	High
Insufficient compression resistance of polymer support	Low	Medium
Polymer support layer too resistive	Low	Low
Thermal processing stability of polymer support insufficient	Low	Low
	3 A 1'	3.6.1
Project complexity	Medium	Medium
Academic culture	Medium	Medium
Subcontracts/consultants not in place in a timely manner	Low	Low

Mitigation approaches identified and available

Past Work Facilitates Success of Current Project

- Amine Polymer Cover Layer can be Used as Highly CO₂-Selective Membrane
- Polyamine and Membrane Syntheses / Characterization Ready for Improvement
 - Good foundation and knowledge base for novel membranes
 - Experimental set-ups in place for current project
- Trained Qualified Researchers Available
 - In place and making impacts
- Membrane Module Fabrication Experience
 - Good for module fabrication of current project
- Techno-economic Analysis Conducted
 - Beneficial for high-level TEA of current project

Summary/Outlook

- Exciting Project
- Qualified Researchers are in Place
- Project Team is Ready for Significant Progress

Acknowledgments

David Lang, Project Officer, DOE/NETL

DOE/NETL, Financial Support